
by Richard Mansfield

CSS Web Design
FOR

DUMmIES
‰

01_584251 ffirs.qxd 2/10/05 11:01 PM Page iii

C1.jpg

01_584251 ffirs.qxd 2/10/05 11:01 PM Page ii

CSS Web Design
FOR

DUMmIES
‰

01_584251 ffirs.qxd 2/10/05 11:01 PM Page i

01_584251 ffirs.qxd 2/10/05 11:01 PM Page ii

by Richard Mansfield

CSS Web Design
FOR

DUMmIES
‰

01_584251 ffirs.qxd 2/10/05 11:01 PM Page iii

CSS Web Design For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005920081

ISBN: 0-7645-8425-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/QS/QT/QV/IN

01_584251 ffirs.qxd 2/10/05 11:01 PM Page iv

www.wiley.com

About the Author
Richard Mansfield was the editor of COMPUTE! Magazine from 1981 to 1987.
During that time, he wrote hundreds of magazine articles and two columns.
From 1987 to 1991, he was editorial director and partner at Signal Research.
He began writing books full-time in 1991 and has written 36 computer books
since 1982. Of those, four became bestsellers: Machine Language for Beginners
(COMPUTE! Books), The Second Book of Machine Language (COMPUTE!
Books), The Visual Guide to Visual Basic (Ventana), and The Visual Basic
Power Toolkit (Ventana, coauthored by Evangelos Petroutsos). His books
combined have sold more than 500,000 copies worldwide and have been
translated into 12 languages.

Richard’s recent titles include Office 2003 Application Development All-in-One
Desk Reference For Dummies, Visual Basic .NET All-in-One Desk Reference
For Dummies, Visual Basic .NET Weekend Crash Course, Visual Basic .NET
Database Programming For Dummies, Visual Basic 6 Database Programming
For Dummies (all published by Wiley), Hacker Attack (Sybex), and The Wi-Fi
Experience: Everyone’s Guide to 802.11b Wireless Networking (Pearson
Education, coauthored by Harold Davis).

01_584251 ffirs.qxd 2/10/05 11:01 PM Page v

01_584251 ffirs.qxd 2/10/05 11:01 PM Page vi

Dedication
This book is dedicated to David Lee Roach.

Author’s Acknowledgments
I want to thank acquisitions editor Katie Feltman for her thoughtful and help-
ful advice. I’ve worked with Katie before, and she knows her stuff. I was also
lucky to have two strong editors improve this book. Project editor Linda
Morris asks the right questions, makes lots of good suggestions, and overall
stands in as a representative of the reader. She requests clarification when
necessary, and ensures that the reader will find consistent, useful informa-
tion. She deserves credit for her taste and the high quality of her editing.

The technical editor, Vanessa Williams, reviewed the entire manuscript for
technical quality. For that I thank her. I’m happy to report that she found few
flaws in the programming code, but I’m certainly glad to have an opportunity
to fix the few flaws she did spot. Vanessa also suggested alternative CSS tech-
niques and additional resources, deepening the technical information avail-
able in the book.

To these, and all the other good people at Wiley who contributed to the book,
my thanks for the time and care they took to ensure quality every step along
the way to publication.

01_584251 ffirs.qxd 2/10/05 11:01 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Linda Morris

Acquisitions Editor: Katie Feltman

Copy Editor: Linda Morris

Technical Editor: Vanessa Williams

Editorial Manager: Carol Sheehan

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Adrienne Martinez

Layout and Graphics: Carl Byers, Andrea Dahl,
Lauren Goddard, Joyce Haughey,
Stephanie D. Jumper, Melanee Prendergast

Proofreaders: Leeann Harney, Jessica Kramer

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_584251 ffirs.qxd 2/10/05 11:01 PM Page viii

www.dummies.com

Contents at a Glance
Introduction ..1

Part I: The ABCs of CSS ...13
Chapter 1: CSS Fulfills a Promise ...15
Chapter 2: Getting Results with CSS ..31
Chapter 3: Up and Running with Selectors ..47

Part II: Looking Good with CSS67
Chapter 4: Taking a Position ..69
Chapter 5: All About Text ..85
Chapter 6: Managing Details in Style Sheets ..107
Chapter 7: Styling It Your Way ...127

Part III: Adding Artistry: Design and Composition
with CSS ...153
Chapter 8: Web Design Basics ..155
Chapter 9: Spacing Out with Boxes ...169
Chapter 10: Organizing Your Web Pages Visually ..183
Chapter 11: Designing with Auto and Inline Elements ..197
Chapter 12: Handling Tables and Lists

(And Doing Away with Tables) ..207
Chapter 13: Creating Dramatic Visual Effects ..233

Part IV: Advanced CSS Techniques251
Chapter 14: Specializing in Selection ..253
Chapter 15: CSS Moves into the Future ..265
Chapter 16: Programmatic CSS ..279
Chapter 17: Testing and Debugging ..297

Part V: The Part of Tens ...317
Chapter 18: Ten Great CSS Tips and Tricks ..319
Chapter 19: Ten Topics That Don’t Fit Elsewhere in the Book

(But Are Important) ..329

Index ...339

02_584251 ftoc.qxd 2/10/05 11:06 PM Page ix

02_584251 ftoc.qxd 2/10/05 11:06 PM Page x

Table of Contents
Introduction..1

Creating Compelling Designs ...1
Separating Content from Style ...1
Benefiting from the Cascade ..2
The End of the Browser Wars ..3
Who Should Read This Book ...4

For designers, would-be designers, programmers,
and developers alike ...5

Making do in a shaky economy ...5
Plain, Clear English ...6
How to Use This Book ..6
Foolish Assumptions ..7
How This Book Is Organized ..8

Part I: The ABCs of CSS ...8
Part II: Looking Good with CSS ..9
Part III: Adding Artistry: Design and Composition with CSS9
Part IV: Advanced CSS Techniques ...10
Part V: The Part of Tens ..10

Conventions Used in This Book ..11
Special symbols ...11
Avoid typos: find all the code online ..12
What you need to get started ..12
Icons used in this book ...12

Part I: The ABCs of CSS ..13

Chapter 1: CSS Fulfills a Promise .15
Improving HTML ...15
Getting Efficient with CSS ...17

Changing Web design for the better ...17
Being ready for anything ..18

Designers Want to Design ..20
Where CSS Fits with the Tools You Already Use22
Getting Practical ..24

Look for CSS features in your current software24
Resources on the Web ..24

Avoiding Browser Compatibility Problems ..25
Getting Dramatic with Filters ...26

02_584251 ftoc.qxd 2/10/05 11:06 PM Page xi

Chapter 2: Getting Results with CSS .31
Starting from Scratch ..31
Selectors and Such: CSS Syntax ...33

Properties refer to attributes ...34
Grouping ...35

Showing Some Class ...35
Specifying All-Purpose Properties ..37
Using an ID Selector ..38

Specifying more than one class ...40
Capitalizing on case-sensitivity ...40
Just stay in lowercase ...41

When Styles Cascade ..41
Visualizing specificity ...41
Understanding CSS specificity ...43

Grasping Inheritance ..45

Chapter 3: Up and Running with Selectors .47
Working with Universal Selectors ...48
Using Multiple Declarations ...49
Using Attributes as Selectors ..50
The Simplest Attribute Selector ..52

Matching attribute selection types ...53
Matching partial attribute values ..53
Matching exact attribute values ..54

Building Your First Style Sheet ..54
Transforming a Word document into a Web page55
Visualizing levels of specificity ..57

Creating an External Cascading Style Sheet ..59
The importance of !Important ...60
The importance of being closest ...62
Omit semicolons ..62
Everything must be important ..62

Adding New Selectors ...63
When Cascades Collide ..64

Part II: Looking Good with CSS67

Chapter 4: Taking a Position .69
Relativity Explained ..72
Flow Versus Positioning, Floating Versus Coordinates73
Controlling Layout with Offsetting ...76
Moving Deeper into Positioning ..79
Stacking Elements on Top of Each Other with the Z-Axis81
Combining Stacking with Translucence ...82

CSS Web Design For Dummies xii

02_584251 ftoc.qxd 2/10/05 11:06 PM Page xii

Chapter 5: All About Text .85
Thinking About User Interfaces ..85
Substituting Fonts ...86
Types of Type ..87

Avoiding monospace ...90
Using system styles ...91

All Roads Lead to Rome ...92
Simplicity above all ...92
When you’re not too picky about typeface 94

Using Font Variants ...94
Specifying Font Weight ...95
Using the Font-Variant for Small Caps ..96
Simple Font-Style ...96
Choosing the Right Typeface Size ...97

Specifying relative sizes ..97
Controlling font size with greater precision98

Specifying Absolute Measured Sizes ..99
Font: The All-Purpose Property ...100
Adjusting Line Height ...101
Decorating Text with Underlining and Strikethrough103
Transforming Text with Capitalization ...104
Shading with Drop-Shadowing ...105

Chapter 6: Managing Details in Style Sheets 107
Specifying Size and Position ..107

Measuring length ...108
Understanding little em ..109

Figuring the Percentages ..111
Adding a Bit of Color ...113

Creating special paragraph styles ...115
Calculating color ...115
Using the color list ..116
Coloring borders ...118
Using inset border colors ...119
Where does light come from? ..121

Coloring the Background ...123

Chapter 7: Styling It Your Way .127
Kerning for Better Headlines ...127

True kerning ...129
Ultra kerning ..131

Vertical Tightening ..133
Adjusting percentages ..133
Understanding baselines ..135

CSS3 Introduces Kerning Mode ...135

xiiiTable of Contents

02_584251 ftoc.qxd 2/10/05 11:06 PM Page xiii

Word spacing ...135
Aligning Text ..138

Vertical aligning ...138
Using descriptive values ..139
Aligning by percentages ...140

Horizontal Alignment ..141
Indenting Text ..142
Texturing ..143
Setting Individual Background Properties ...147

No background inheritance ..148
Special repeats ...148

Background Positioning ...149

Part III: Adding Artistry: Design and
Composition with CSS ...153

Chapter 8: Web Design Basics .155
Organizing with White Space ...156

Take a second look ..156
Getting on balance ..156

Emphasizing an Object with Silhouetting ..159
Adding Drop Caps ...160
Trapping White Space ..163
Following the Rule of Thirds ..164

The four hot spots ...165
Background image positioning ..166

Keeping It Appropriate ...168

Chapter 9: Spacing Out with Boxes .169
Getting a Grip on Boxes ..169

Adding a border ...171
Adding padding ...171
Adding a margin ...172

Vertical Positioning ...173
Horizontal Positioning ..176
Breaking Up Text with Horizontal Lines ...178

Chapter 10: Organizing Your Web Pages Visually 183
Managing Borders ...184

Specifying a simple border ...184
Choosing from lotsa border styles ..186
Mixing and matching styles ...188
Specifying border width ...189
Coloring a border ..190

CSS Web Design For Dummies xiv

02_584251 ftoc.qxd 2/10/05 11:06 PM Page xiv

Floating About ...191
Canceling a Float with Clear ..194

Chapter 11: Designing with Auto and Inline Elements 197
Employing Auto to Control Layout ...197

Specifying margins ..200
Centering ..201
Using !DOCTYPE to force IE to comply ...201

Vertical Positioning with Auto ...202
Handling Inline Elements ..203

Chapter 12: Handling Tables and Lists (And Doing
Away with Tables) .207

List Styles O’ Plenty ..208
Getting exotic with the list-style-image property210
Positioning lists ...211
Putting it all together ..213

Managing Tables ..213
Stalking invisible .gifs ..213
Employing the table-layout property ...214
Avoiding properties not supported by IE216

Doing Without Tables ...216
Positioning where you will ...217
Placing content willy-nilly ..217
Loving your layout a little too much ...222

Creating Columns that Resize with the Browser224
Building Fixed Columns ..228

Chapter 13: Creating Dramatic Visual Effects 233
Impressing with Static Filters ...234
Dazzling with Transition Filters ..238
Fading Between Images ..243
Transitions between Pages ..246

Part IV: Advanced CSS Techniques251

Chapter 14: Specializing in Selection .253
Getting Specific with Inheritance ..253

Grasping tree structure ..254
Parents versus ancestors ...254
When a root sits above the tree ..255
The shaky tree ...256

Offspring Inheriting ...257

xvTable of Contents

02_584251 ftoc.qxd 2/10/05 11:06 PM Page xv

Contextual Selectors ...257
Selecting by context rather than grouping258
Descending deeper ..261
Styling distant descendants ...262

Thwarting Descendant Selectors ..263
Selectors Using Attributes ...264

Chapter 15: CSS Moves into the Future .265
Getting to Know CSS3 ...265

Working with Mozilla-supported CSS3 features266
Setting opacity ...268

Discovering False Pseudo-Classes ..269
Hyperlink formatting with pseudo-classes270
Hovering with pseudo-classes ...272
Adding your own class name to a pseudo-class272
Selecting first children ..273

Employing Fake Pseudo-Elements ..273
Creating quick drop caps with first-letter274
Using the first-line element for special lines of text275

The Future of Pseudo ...275
Enabling, disabling ..276
Checking radio buttons and check boxes276

Figuring Out Dubious Descendant Selectors ...277

Chapter 16: Programmatic CSS .279
Extending CSS with Scripting ...279
Executing Scripts Automatically upon Loading282
Using the Right Tools for the Job ..283
Modifying CSS Styles through Programming ...284

Changing styles ..284
Changing the rules ..288

Timing Things Right ..290
Grasping countdown timers ..293
Employing metronome timers ...294

Chapter 17: Testing and Debugging .297
Checking Punctuation ...297
Validating Your Work ..300
Ignoring Fringe Browsers ...301

Going back in time ...301
What if you must consider compatibility?301
Checking compatibility charts ...302
Sniffing browsers ...302
Forcing users to upgrade ..303

CSS Web Design For Dummies xvi

02_584251 ftoc.qxd 2/10/05 11:06 PM Page xvi

Trying Out the W3C Validator ...304
Hoping for helpful error messages ..307
Identifying property value problems ..308

Validating HTML ..309
Meeting some requirements ..310
Finding a better bug trap ..314

Debugging Script ...315

Part V: The Part of Tens ..317

Chapter 18: Ten Great CSS Tips and Tricks .319
Letting Users Control Font Size ...319
Making Sure Your Borders Show Up ...320
Watching Out for Color Clash ..320
Centering for Everyone ..320
Timing Blurring and Other Effects ..321
Debugging Script ...323
Finding a List Apart (Get It?) ...324
Using Your Own Bullets in Lists ..324
Specifying Graphics Locations ..325
Combining Classes ..326
Aunt Mildred’s Glazed Carrots ..327

Chapter 19: Ten Topics That Don’t Fit Elsewhere in the Book
(But Are Important) .329

Keeping Current via the Internet ...330
Upgrading HTML Web Pages to CSS ...330
Finding Good Tutorials and Reference Information330
Remembering Inheritance ..331
The SelectORacle: Getting Explanations About Complicated Rules332
Providing Alternatives ..332
Letting the User Decide ..333
Exploring Visual Studio ..335
Rediscovering Columns ..336
Playing with Positions ..337

Index..339

xviiTable of Contents

02_584251 ftoc.qxd 2/10/05 11:06 PM Page xvii

CSS Web Design For Dummies xviii

02_584251 ftoc.qxd 2/10/05 11:06 PM Page xviii

Introduction

Welcome to the world of Cascading Style Sheets (CSS). With CSS, you
can design gorgeous and highly effective Web sites. CSS offers power

and flexibility to Web site developers and designers. This book shows you
how to use CSS to make your Web pages come alive.

Marketing experts like to say that the box helps sell the jewelry. CSS does
several useful things, but one of the most important is to help you design
much more attractive packages to hold your Web page contents.

Creating Compelling Designs
CSS allows you to separate presentation from content when building a Web
site. Put another way, HTML itself is rather limited in what it can effectively
display. It’s fine for holding or describing content (such as a paragraph of
text), but the appearance of raw HTML Web pages isn’t very stylish (to put
it kindly).

With HTML, you often can’t find an easy way — or any way at all — to display
the content so that it looks really good when someone views it in a browser.
Using CSS techniques, you can often make your site much more attractive,
and at the same time, enforce style rules that help unify the entire site’s
appearance across all its pages.

In this book, you find out how to wrap your online content in appealing visual
designs using CSS, including special dramatic effects such as animated transi-
tions between images or entire pages. Style sheets can provide striking, well-
designed containers into which relatively plain HTML content is poured.

The best Web pages aren’t merely efficient, logical, and stable — they also
look really cool. The end result of employing CSS is a more attractive Web site
with a more coherent, effective overall design.

Separating Content from Style
CSS also improves efficiency by allowing you to separate content from the
styles that control the content’s appearance. You can describe your CSS styles
in the header section of a Web page — thereby moving them up and out of

03_584251 intro.qxd 2/10/05 11:14 PM Page 1

2 CSS Web Design For Dummies

the HTML code. Or you can even put your CSS style rules in entirely separate
files. A Web page’s HTML resides in one file. It merely includes a link specify-
ing the location of the independent CSS file that contains the style rules
(how a Heading 1 headline or paragraph elements are supposed to look,
where they’re positioned, how big they are, what texture underlies them, and
so on).

If you’re a designer working on a Web page with a programmer, it’s more
efficient for you to separate your code from the programmer’s HTML or
script code. A designer can work on an external CSS style sheet, rather than
wading through the programmer’s HTML files and trying to manage style
attributes embedded within the HTML code. The HTML programmer will
appreciate this, and so will you, the CSS designer. No more stepping on each
other’s toes.

Of course, many Web sites are designed by a single person wearing many
hats: HTML, script, and CSS can all be written by one talented individual. This
book doesn’t neglect that audience. Most of the CSS examples in this book
are contained within HTML pages, demonstrating how the entire page works
in harmony. You can just load the book’s examples into your browser and see
the delightful results immediately. An entire chapter is even devoted to
scripting, so that you can get your feet wet with interactive dynamic CSS
effects as well.

Benefiting from the Cascade
CSS offers various kinds of benefits. For example, a single style sheet can cas-
cade its effects through all the pages in a Web site. One side of effect of this is
that if you decide to change your site’s default body font from Arial to Times
New Roman, you need make that change only once within the style sheet,
rather than hunting down all the attributes throughout the entire set of HTML
code files that make up your site. Another benefit of using CSS is that the style
sheet only needs to be downloaded once to the user’s computer. Thereafter,
it’s called up from a local cache, resulting in smaller HTML pages. Your Web
pages load faster into the user’s browser — still a major consideration for the
60 percent or so of online Americans who still don’t have broadband high-
speed Internet connections.

If you’ve already worked with CSS, this book will sharpen your skills and
show you lots of new techniques. You’ll take your Web design to the next
level. If you’re new to CSS, you’re in the right place: You’ll find just what you
need here to build unified, attractive, inviting Web sites.

This book shows you, the CSS designer, how best to exploit, expand, adminis-
ter, and write code for Web pages. The book covers all the essentials of CSS,

03_584251 intro.qxd 2/10/05 11:14 PM Page 2

3Introduction

with many step-by-step examples showing how to manage the various ele-
ments of CSS, including:

� How to design Web pages without using tables

� Understanding CSS inheritance

� Best coding techniques

� Page elements (spacing, fonts, colors, and so on)

� Practical ways to integrate CSS into new or existing Web sites

� Syntax rules, properties, and values

� How CSS works together with HTML and scripting

� Embedded and external style sheets

� Advanced visual effects such as transitions

� Selectors and declarations

� The latest CSS3 features

The End of the Browser Wars
CSS has been available for several years, but, like DHTML (dynamic HTML for
Web page animation effects), CSS languished because of the browser wars.
Basically, Netscape’s Navigator and Microsoft’s Internet Explorer attempted
to enforce different, proprietary standards. Now that Netscape is all but dead
in the marketplace and standards have become relatively stable because of
the dominance of Internet Explorer, CSS has become a major technology for
the creation and design of first-rate Web sites. Some incompatibility issues
still exist, but this book deals with them only occasionally. Why? Because often
you need not write complex, workaround code to take into account an audi-
ence so small that, practically speaking, many Web pages simply ignore them.

That said, I realize that some designers are forced to deal with browser com-
patibility issues, so I do explore the topic in some depth in Chapter 17. You
see how to detect which browser and version the user has and how to take
appropriate steps to deal with it in your Web page code. I also tell you where
to find the best compatibility charts online; how to see what your page looks
like and test its behavior in non-compliant browsers; and how to automati-
cally redirect a browser to a different Web page or Web site if that browser
can’t deal with your CSS code.

A few years ago, people were moving from Netscape to Internet Explorer, but
a large percent of your Web site’s audience was still using Netscape. You had to
write CSS (and HTML and scripting) that worked effectively in both browsers.

03_584251 intro.qxd 2/10/05 11:14 PM Page 3

4 CSS Web Design For Dummies

That’s simply no longer true. The migration is over; Netscape is merely a
ghost wandering the halls of the computer history museums.

Most CSS books waste lots of space on compatibility issues. I’ve decided to
greatly reduce coverage of that topic for precisely the same reason that
today’s newspapers infrequently devote space to the Gulf War of 1991. That
war’s over. Same with Netscape and the other, minor browsers like Opera
that have a small user base. History and popular opinion has elected Internet
Explorer (IE) as the standard — who are we to argue? One exception is Mozilla
Firefox, which is coming out of left field and could eventually challenge
Internet Explorer’s dominance in the browser arena.

Firefox is an “open source” — in other words, “no charge” — piece of software.
Of course, Internet Explorer is also sometimes described as free. True, it
comes “free” with Windows, but as we all know, that’s not precisely the same
as no charge. You do buy Windows, and its browser is a feature of Windows
that you get bundled into the operating system.

Another meaning of open source is that the code, the programming underly-
ing the Firefox browser, is available to anyone. Lots of good programmers are
writing interesting plug-ins and modifications that you can add to Firefox to
give it new features.

Firefox is fast, sleek, and overall pretty stable. In fact, it’s not under constant
attack by hackers, as is IE. There are two reasons for this: not too many
people are using Firefox (yet), so the payoff of using it to spread viruses is
rather poor. Second, virus authors are frequently in sympathy with the ideals
of the open source software community, and, shall we say, less inclined to
appreciate Microsoft.

So, watch out, IE. Firefox, or something similar, could eventually gain market
share and, possibly, eventually become the browser standard. But for now,
more than 95 percent of browser users are looking at your Web page through
IE, so you can generally ignore the problems that arise when you try to make
your CSS code work with all possible browsers and all possible versions of
those browsers. IE is likely to continue to dominate for at least the next few
years.

Just relax and assume that your Web page visitors are either using IE, or are
accustomed to the penalties for sticking with a fringe browser. But if you
must face the compatibility issue, take a look at Chapter 17.

Who Should Read This Book
This book is designed to satisfy a broad audience, including both Web pro-
grammers and designers. The book shows how to exploit CSS by developing
solutions to common Internet coding and Web-page design problems.

03_584251 intro.qxd 2/10/05 11:14 PM Page 4

5Introduction

Programmers discover how to more effectively control browser elements in
order to build Web clients that are as interactive and efficient as traditional
Windows applications. Designers see how to create attractive, coherent Web
sites. Beginners will find the book to be an effective tutorial introduction to
CSS; experienced users will find it a useful, up-to-date reference.

For designers, would-be designers,
programmers, and developers alike
The book is written for a broad audience: designers, would-be designers,
programmers, developers, and even small office staff or individuals who
want their Web pages to come alive. In other words, the book is valuable to
everyone who wants to design more effective Web pages and do the work
more efficiently.

The book shows how to exploit validators to ferret out errors in your code, and
how to solve design problems using utilities, features, hidden shortcuts, and
other CSS techniques.

The book is also for would-be designers who want to get involved in creating,
customizing, or improving Web page design, but just don’t know how to get
started. Whether you want to sell cars, create a good-looking blog, or are
interested in creating a great visual impression, you’ll find what you need in
this book. The book is filled with useful advice about design (what looks good,
what looks bad, and what looks just plain boring). And you get plenty of prac-
tical, real-world CSS examples, including

� Following best design practices

� Managing text effectively

� Using the rule of thirds for effective overall page design

� Creating dynamic, animated effects such as fades and moving shadows

Making do in a shaky economy
No matter what they tell us from the bully pulpit, we know how shaky the econ-
omy is, don’t we? The primary trend in nearly all industries today is toward
making do with less: fewer workers, less time to complete tasks, and stretch-
ing resources as much as possible. This trend demands improved productiv-
ity. Some offices respond by letting some of the staff go and heaping additional
work on the remaining employees. In many cases, a more successful long-term
tactic is to improve the general efficiency of the staff, downsized or not.

03_584251 intro.qxd 2/10/05 11:14 PM Page 5

6 CSS Web Design For Dummies

CSS is loaded with features to improve productivity for Web page design and
maintenance, if the designer knows how to exploit them. CSS Web Design For
Dummies is the handbook that takes the reader from idea to finished site.

I hope that all my work exploring CSS benefits you, showing you many useful
shortcuts and guiding you over the rough spots. I won’t pull any punches: I
confess when I had to wrestle with CSS or other code for several hours to
accomplish something. But after I’ve put in the time getting it work, I can
almost always show you how to do it in a few minutes. The example code is
here in this book, ready to do what you need done.

Plain, Clear English
Also, unlike some other books about CSS (which must remain nameless —
they know who they are!), this book is written in plain, clear English. Novices
find many sophisticated tasks made easy: The book is filled with step-by-step
examples that beginners can follow, even if they’ve never written a line of CSS
or HTML, or designed a single Web page. And if you’re an experienced CSS
designer, better still. You’ll find out how to accomplish sophisticated tasks
quickly. You also discover how to harness the machinery built into CSS. You
also find out how to leverage your current skills to prepare for the future of
CSS programming: moving beyond CSS2 to CSS3.

How to Use This Book
This book concentrates on the currently accepted version of Cascading Style
Sheets: CSS2. The next version, CSS3, is not scheduled to become official
(translation: fully adopted by Internet Explorer) for several years. However,
the CSS committees continue to meet, exchange e-mail, and accept sugges-
tions from the likes of us. They also plan to roll out “modules” — parts of the
CSS3 recommendation will appear occasionally for the next few years. If you
want to experiment with some of the new stuff, download Mozilla Firefox and
try some of the CSS3 code examples in Chapter 15. They won’t work in
Internet Explorer, as yet.

This book obviously can’t cover every feature in HTML, scripting, and still do
a good job with CSS itself. Yet these technologies intimately interact in the
better, more dynamic, and engaging Web sites. CSS adds beauty and coherence
to a site. HTML contains the content and organizes it into a tree structure.
Scripting offers sophisticated interaction with the user, dramatic animated
effects, and other benefits.

As you try the many step-by-step examples in this book, you’ll become familiar
with the most useful features of CSS and find many shortcuts and time-saving

03_584251 intro.qxd 2/10/05 11:14 PM Page 6

7Introduction

tricks — some that can take years to discover on your own. (Believe me, some
of them have taken me years to stumble upon.) You also see how to exploit
HTML and scripting in the context of CSS design. As you’ll discover, it’s fasci-
nating to make these technologies stand together and kick high in the air as
one, as if they were a single organism. Kinda like the Rockettes.

Many people think that HTML is impossibly difficult and that scripting (pro-
gramming in the classic meaning of the term) is even more difficult. They
don’t have to be.

In fact, you find solutions in this book that you can simply copy. Just copy
and paste a few lines of code, for example, to be able to automatically change
your CSS styles while the user is viewing your page in the browser. In other
words, you can, for instance, resize a paragraph if the user clicks on it. The
paragraph’s font-size style can change in response to events like a click. Or,
you can set up a timer that makes things happen after a period of delay, or on
regular intervals. This sort of thing amplifies your CSS designs and is worth
adding to your bag of designer tricks.

This book tells you if a particular wheel has already been invented. It also
shows you how to save time by using or modifying existing Web pages to fit
your needs, instead of building new solutions from scratch. But if you’re doing
something totally original (congratulations!), this book also gives you step-by-
step recipes for tackling all the CSS tasks from the ground up.

Foolish Assumptions
In writing this book, I had to make a few assumptions about you, dear reader.
I assume that you know how to use a computer, its mouse, and other parts.

I also assume that you don’t know much, if anything, about CSS programming.
Perhaps most importantly, I assume that you don’t want lots of theory or
extraneous details. You just want to get Web design jobs done, not sit around
listening to airy theory about complex selector inheritance and such. When
a job can be done in CSS, I show you how. When you need to reach out to the
more advanced scripts or HTML techniques, I show you that, too. Whatever
it takes, the job gets done.

You do end up understanding all about inheritance and selectors and how
they work. It’s just that you don’t have to sit through a lecture on the abstract
philosophy underlying CSS behaviors. You’d fall asleep, believe me. Instead,
you get practical advice, and all the necessary information you need to make
progress toward your goals.

03_584251 intro.qxd 2/10/05 11:14 PM Page 7

How This Book Is Organized
The overall goal of CSS Web Design For Dummies is to provide an enjoyable
and understandable guide for the CSS designer. This book is accessible to
people with little or no CSS experience.

The book is divided five parts. But just because the book is organized doesn’t
mean you have to be. You don’t have to read the book in sequence from
Chapter 1 to the end, just as you don’t have to read a cookbook in sequence.

In fact, if you want to see what’s coming up in CSS3, just go to Chapter 15
right away.

If you want to find out how to create well-designed Web pages without resort-
ing to the traditional HTML tables to hang your elements on, just flip over to
Chapter 12, which explains how to build pages using only CSS positioning fea-
tures. You’re not expected to know what’s in Parts I or II to get results in Part
III. Similarly, within each chapter, you can often scan the headings and jump
right to the section covering the task that you want to accomplish. No need
to read each chapter from start to finish. I’ve been careful to make all the
examples and CSS code as self-contained as possible. Each of them works,
too. They’ve been thoroughly tested.

All of the source code for all the examples in this book is downloadable from
this book’s Web site at www.dummies.com/go/csswebdesign.

The following sections give you a brief description of the book’s five
main parts.

Part I: The ABCs of CSS
This first Part introduces CSS, explaining its purposes and fundamental
nature. You see how common tasks are accomplished and find out all about
the elements of CSS design. You also discover how CSS improves on HTML
and find out how to build practical style sheets for real-world Web site solu-
tions. You figure out how to think beyond HTML — putting together Web
pages that have style and grace — all because of the added power that CSS
gives a designer. Topics in this part include starting from scratch, migrating
from HTML to CSS, understanding the meaning of the cascade, and getting
your feet wet with the major building blocks of CSS behavior: selectors and
inheritance. You also consider what kind of editor (if any) you might want to
use to assist you in building CSS styles.

8 CSS Web Design For Dummies

03_584251 intro.qxd 2/10/05 11:14 PM Page 8

9Introduction

Part II: Looking Good with CSS
Part II begins with some practical exploration of the details of CSS design: how
you position the pages various zones, conditional formatting, relative position-
ing, absolute and fixed elements, and stacking flow. You go on to see all about
handling text: a refresher course for designers who need to brush up on clas-
sic fonts, weights, special effects, and good text design principles in general.
This section also serves as a course in text display techniques for those new
to the subject. All the essentials are covered, from simple concepts such as
font size, to advanced subjects like the uses of the various font families (and
why you should avoid some of them like the plagues that they are). This book
also covers the kinds of values you can provide to CSS properties, like color
and position. You explore the units of length and measurement, color values,
percentages, and related positioning and sizing specs. Part II concludes with
a chapter where you play around with some great designer secrets: kerning,
leading, custom backgrounds, adding textures, and using graphics applica-
tions to improve the quality of some of your page elements. In general, you
find out how to achieve striking, compelling design and how to manage some-
thing equally important: avoiding vulgarity in your designs.

Part III: Adding Artistry: Design
and Composition with CSS
Part III picks up and expands the topics that concluded Part II: how to make
beautiful Web pages using CSS. You consider the elements of good page com-
position, the secrets of Web design gurus, and the issues involving symmetry.
(Is severely symmetrical layout ever a good idea, outside of debutante-ball
and wedding invitations?) You also find out how to take a new look at your
overall design, abstracting the shapes so that you’re not reading any text or
viewing any photos. Instead, you’re looking at the black, white, and gray rec-
tangles (and hopefully other shapes) that compose your page.

In this Part, you go on to manipulate margins, padding, borders, lines, and
frames. These elements allow you to build effective zones within your page,
cuing the viewer about the nature of each zone and collecting related informa-
tion inside separate zones. For example, a caption and the photo it describes
can be considered a logical zone, so you might want to frame them, or use a
line beneath them, or add some margins around them.

This Part also explores the best way to display tables and lists and how to
get rid of tables that are not displayed. (Traditionally, tables have been used
as hooks on which to hang the other elements of a Web page, allowing design-
ers to position things. Now, you can get that job done better with pure CSS.)

03_584251 intro.qxd 2/10/05 11:14 PM Page 9

10 CSS Web Design For Dummies

Part III concludes with some cool transition effects. You see how to gently
fade in some text or graphics. (You’ve seen the effect on the better-designed
Web pages: One element gradually grows dim as a second element under-
neath it becomes visible.) You also discover other special effects like those
seen in movies and TV. Do you want to add some of these animations and
transitions to your own pages? You can.

Part IV: Advanced CSS Techniques
Part IV focuses on various sophisticated techniques for those of you who
have mastered the CSS basics, beginning with an exploration of the ways that
CSS styles cascade, the tree structure, and inheritance in general. You also
discover the latest cutting-edge selectors, pseudo-elements (they’re not as
pseudo as they might seem), and how CSS3 will redefine the way CSS behaves.

You find out how to employ scripting, which for many designers is their first
exposure to true computer programming. True, any time you communicate
with a computer (CSS included), you’re using a computer language and, in a
technical sense, programming. But scripting is hard-core programming. You
can tell the Web page to do pretty much anything you want it to do with
scripts. You learn about dynamic code (changing CSS properties and styles
while your page is in the user’s browser), timers, animation techniques, tog-
gling, and other cool effects possible only via scripts.

You need not go on to become a script programmer, however, to put these
effects into your Web pages. You can just copy and paste — monkey see,
monkey do fashion — and the scripts do their jobs just as well as if you knew
what you were doing. Part IV concludes with how to fix ailing CSS and HTML
code. Called validating, parsing, or more accurately, debugging, you find out
the best way to track down and repair Web pages that misbehave and don’t
do what you want them to do.

Part V: The Part of Tens
This is the smallest Part in the book, but it’s moist and succulent. It includes
various tips, tricks, techniques, and topics that I wanted to include in the
book but didn’t quite find a perfect place for elsewhere.

Sure, it’s a grab-bag — I’m not hiding that fact — but you might find the just
tip you’ve been looking for here. The topics include a utility that you can use
to understand complex CSS selectors (it translates complicated CSS code
into ordinary English); how to avoid common CSS coding errors; a browser-
independent way to center headlines, text, or graphics; fixing script problems;
some of the best CSS online resources, including a site that offers excellent,
understandable tutorials on the more baffling aspects of advanced CSS

03_584251 intro.qxd 2/10/05 11:14 PM Page 10

11Introduction

coding; an explanation of why you should consider using Visual Studio as a
CSS editor; an online site that specializes in ways to use CSS to build columns
into your pages; and more. Each tip was chosen for its succulence.

Conventions Used in This Book
This book is filled with examples that serve as recipes to help you cook up
finished CSS Web pages. Some of these examples are in the form of numbered
steps. Each step starts off with a boldface sentence or two telling you what
you should do. Directly after the bold step, you may see a sentence or two,
not in boldface, telling you what happens as a result of the bold action — a
menu opens, a dialog box pops up, a wizard appears, you win the lottery,
whatever.

I’ve tried to make the examples as general as possible, but at the same time
make them specific, too. Sounds impossible, doesn’t it? Sometimes it was; in
other cases, it wasn’t easy. The idea is to give you a specific example that you
can follow while also giving you a template: an understandable, useful tech-
nique that you can apply directly to your own Web pages. In other words, I
want to illustrate a technique, but in a way that employs real-world, useful CSS.

Special symbols
Note that a special symbol shows you how to navigate menus. For example,
when you see “Choose File➪Save As,” you should select the File menu, and
then select the Save As submenu.

When I display programming code, you see it in a typeface that looks like
this:

<style>

#pfirst {

font-size: 8px;
width: 400px;

}

</style>

Parts of the code that are important to the topic under discussion are in
boldface, like the font-size property in this code. When I mention some
programming code within a regular paragraph of text, I use a special typeface,
like this: width: 400px;. That way, you can easily distinguish programming
code from ordinary text.

03_584251 intro.qxd 2/10/05 11:14 PM Page 11

12 CSS Web Design For Dummies

Avoid typos: find all the code online
Every line of code that you see in this book is also available for downloading
from the Dummies Web site at

www.dummies.com/go/csswebdesign

Take advantage of this handy electronic version of the code by downloading
it from the Web site so that you can then just copy and paste source code
instead of typing it in by hand. It saves you lots of time and of course avoids
those pesky typos.

What you need to get started
To use this book to the fullest, you need only one thing: a PC running
Windows. To test and modify the CSS and HTML Web page code that illus-
trates this book’s various examples, you merely need Windows Notepad and
Internet Explorer. Both come with Windows, so you’re home-free. I mainly
use Internet Explorer to demonstrate and test the CSS-driven Web page exam-
ples throughout the book. Some examples — notably those that use dynamic
filters and transitions in Chapters 13 and 16 — work only in Internet Explorer.
However, I also briefly employ Mozilla Firefox, which is free for the download-
ing and doesn’t cause any side-effects when run on the same computer as
Internet Explorer. Go ahead and install Firefox if you want to try it out.

Icons used in this book
Notice the lovely, eye-catching little icons in the margins of this book. They’re
next to certain paragraphs to emphasize that special information appears.
Here is what the icons mean:

The Tip icon points you to shortcuts and insights that save you time and
trouble. This is the icon I use most of the time.

A Warning icon aims to steer you away from danger. It’s used only once or
twice because CSS has yet to be proven to cause suicide in lab rats.

A Technical Stuff icon highlights nerdy technical discussions that you can
skip if you want to. I’ve used it sparingly — I’m not too fond of unnecessary
technical stuff.

03_584251 intro.qxd 2/10/05 11:14 PM Page 12

Part I
The ABCs of CSS

04_584251 pt01.qxd 2/10/05 11:01 PM Page 13

In this part . . .

Using CSS to create effective, gorgeous Web page
designs doesn’t have to be a tough job. If you’ve

been working with CSS but remain a bit baffled by it, or if
you’re trying it for the first time, you’ve chosen the right
book.

Been confused by blizzards of new concepts: selectors,
inheritance, specificity, tree diagrams, embedded rules,
and plagues of locusts? Been turned off by books that
make almost everything seem hard to understand? Part I
of this book drops you gently into the world of CSS and
ensures that you have a good, solid understanding of what
CSS is, how it works, and all the great things you can do
with it.

CSS offers the Web designer a variety of techniques that
are highly effective and, in most cases, very easy to under-
stand and use. I tell you which techniques aren’t useful
and should be avoided. I also demonstrate how to use the
majority, which are useful.

04_584251 pt01.qxd 2/10/05 11:01 PM Page 14

Chapter 1

CSS Fulfills a Promise
In This Chapter
� Improving HTML with CSS

� Making CSS work with the tools you already use

� Creating practical style sheets

� Avoiding browser compatibility problems

� Getting dramatic with filters

Underneath all Web pages is good old HTML, the markup language that
controls things such as font sizes and color of text, where an image

goes, and info about other elements of the page. HTML is sometimes called
plain HTML, to distinguish it from Web pages built with more sophisticated
techniques such as style sheets. And plain is sure a good word for HTML.

Without help, HTML often produces truly boring pages. Just as unpleasant as
the lackluster pages it produces is the jumble of HTML code that results from
trying to describe an entire Web page using HTML alone. Style sheets to the
rescue.

Improving HTML
CSS (Cascading Style Sheets) was a technology recommended by the World
Wide Web Consortium (W3C) in 1996. An easy way to understand the purpose
of CSS is to view it as an addition to HTML that helps simplify and improve
Web page design. In fact, some CSS effects are not possible via HTML alone.

Another advantage of CSS is that it allows you to specify a style once, but the
browser can apply that style many times in a document. For example, if you
want some of the pictures displayed in your Web site to have a thin, blue frame
around them, you can define this frame as a style in your CSS. Then, instead
of having to repeat an HTML definition of the thin and blue frame — each and
every time you want that particular frame — you can merely insert the CSS
style as an attribute for each graphic element that you want framed.

05_584251 ch01.qxd 2/10/05 11:02 PM Page 15

Put another way, you use CSS to define general rules about how the elements
in your Web pages behave and how they look — where they’re located, their
size, their opacity, and so on. Then you can merely refer to the rule’s name
whenever you want to enforce it within your HTML page.

Here’s a CSS rule that defines a couple of qualities you decide to apply to
your largest headlines, H1:

<style>
H1 { font-size:16pt color:blue;}
</style>

With this CSS rule in effect, any HTML code containing an H1 element is auto-
matically rendered in 16-point type and colored blue:

<html>
<body>

<h1>this headline is blue and 16 pt.</h1>
</body>

</html>

CSS rules can be defined in a separate .css file or embedded within the HTML
file. Here’s the CSS headline style rule embedded within the header of an
HTML file:

<html>
<head>

<style>
h1 { font-size:16pt color:blue;}

</style>
</head>
<body>

<h1>this headline is blue and 16 pt.</h1>
</body>

</html>

Notice the <style> element. You can define your CSS styles inside this ele-
ment. (You can also have multiple <style> elements on a page if you wish.)

For efficiency, nearly all the CSS code for the examples in this book is put
right in the HTML document, within a <style> element, as in the preceding
code. This makes saving the entire example — CSS plus HTML — as an .htm
file easier. Just double-click the file in Windows Explorer to automatically
load the example into Internet Explorer to see it work. However, in your own
work, you’re likely to put CSS in its own separate file, and then use the <link>
element in the HTML document to import the CSS. You can put CSS styles in
three places: an external file (with .css as the file extension); in the HTML file
within the header section inside a <style> element; or even inside an HTML
element, using the style= attribute. More on these issues in Chapter 3.

16 Part I: The ABCs of CSS

05_584251 ch01.qxd 2/10/05 11:02 PM Page 16

Getting Efficient with CSS
Defining a style in one location as CSS does has several advantages. First, it
eliminates redundancy: You don’t have to keep specifying its font size and
color each time you use the <h1> tag in your document, for example. That
makes Web page code easier to read and to modify later. If you’re familiar
with computer programming, think of a simple CSS style rule as something
like a programming language constant: You specify, for example, the local tax
rate by making up a name such as LocalTax, and then assigning a value to it
like this: Constant LocalTax = .07. Thereafter, throughout your program,
you don’t need to repeatedly specify the .07. You merely use the constant’s
name LocalTax.

Similarly, after you’ve defined a CSS headline style, you can thereafter merely
use the class name for that style, no matter how lengthy and complex that
style might be. In this example, you use no class name, so every H1 headline
is rendered with this style:

<style>
h1 { font-size:16pt color:blue;}

</style>

A second advantage of gathering all style definitions into a single location is
that you can more easily make global changes. What if you decided to change
all the H1 headlines to red instead of blue? If you didn’t use a style sheet, you
would have to search for all H1 elements throughout the entire Web site’s
HTML files and modify each of those elements in turn.

But if you had the foresight to use a style sheet, you need only change the
single definition of the style for H1 in the style sheet itself. The specs are
automatically applied throughout the HTML. In other words, just make this
change from blue to red in the style sheet:

H1 { font-size:16pt color:red;}

All the headlines between the <h1> and </h1> tags throughout the entire
Web site are now displayed as red text.

Changing Web design for the better
HTML originally was designed to work something like an outline, specifying
the structure of a document, without too much attention paid to the actual
visual style, or design, of the document. An outline merely organizes ideas
hierarchically: A, B, C, and so on are the major ideas. Within those categories,

17Chapter 1: CSS Fulfills a Promise

05_584251 ch01.qxd 2/10/05 11:02 PM Page 17

you have subdivisions such as 1, 2, 3, 4 and even lower divisions such as a, b,
c, d and so on. The equivalent outline structure in HTML is described with
various headline levels such as H1, H2, H3, and so on.

HTML was supposed to simply define content: This is body text, this is a
headline, this is a table, and so on. But Web designers naturally wanted to
offer ever more compelling, visually attractive Web pages. After all, the
Internet more often competes with lively television ads than with dry, highly
structured, academic journals. HTML began to grow willy-nilly by adding
many special formatting elements and attributes such as italics and color.
This inflation of tags made creating, reading, and modifying HTML increasingly
cumbersome. Separating the content (structure) from the page’s design and
layout became necessary. Enter CSS. When you use CSS, the HTML is left to
primarily handle the structure and the CSS file contains the styles defining
how the HTML elements look.

Also, CSS also offers the Web page designer features unavailable in plain
HTML. And as you’ll see throughout this book, CSS gives a designer much
greater control over the appearance of a Web page.

Being ready for anything
Of course, you’ll never have absolute control over Web pages if you create
sites for the Internet. There will never be a truly stable, single, predictable
display for Web pages. Why? Because, like some celebrities, a Web page
never knows where it’s going to end up from minute to minute. It has to be
prepared to be on display in all kinds of situations.

A Web page might be shown on a Pocket PC PDA screen — with very few
pixels and in black and white. Or it might be shown on the huge Diamond
Vision display in Hong Kong, which is longer than a Boeing 747, or even the
Jumbotron screen in Toronto’s Skydome, which measures 110 feet wide by
33 feet tall.

Not only do you have to consider huge differences in size, but also in aspect
ratio (shape). Many computer monitors are still the traditional square shape,
but increasingly Internet users are switching to widescreen monitors — wider
than they are high, like a movie screen — to better display HDTV and DVDs.
For Internet users, widescreen just means you see more horizontal informa-
tion per page. Web pages designed with absolute (unchanging) positioning
leave several inches of empty white space along the right side of a
widescreen monitor. What would Vincent do?

How would van Gogh have dealt with the problem of designing a picture of a
vase of sunflowers that might be shown on a widescreen Jumbotron, but also
on a little square monitor?

18 Part I: The ABCs of CSS

05_584251 ch01.qxd 2/10/05 11:02 PM Page 18

The basic solution to this problem is to specify size and position in relative
rather than absolute terms. For example, instead of saying, “The sunflower is
2 inches high and is located 12 inches from the left side,” (an absolute specifi-
cation), you say, “The sunflower is 6 percent large and 35 percent from the
left side” (a relative specification). Other ways of specifying sizes relatively
include pixels (which are the smallest units of information that a given moni-
tor can display, so they vary from monitor to monitor) or such general terms
as x-large or large.

Alert readers might be asking at this point, “Six percent of what?” The percent-
age is calculated based on the containing block. It can be the browser window
(<body>), but it can also be such blocks as a <div> within the <body>. In this
example, the containing block is the total size of the browser, but you can
also specify percentage for other, smaller, containers within the browser
window. More on this issue in Chapter 4.

Relative specs translate well into various sizes of displays. A sunflower 6 per-
cent large would be displayed with about 48 pixels on an 800x600 computer
monitor, but displayed 18 feet wide on a Jumbotron that’s 300 feet wide.

In other words — when you specify relative measurements or positions —
your graphics or text are automatically scaled as necessary to fit whatever
size display is being used at the time.

Of course, if you’re building pages for an intranet site, you might well know
that everyone in your office network is required to use the same size screen,
the same browser, the same operating system, and allowed no family photos
in their cubicle. If that’s the case, why are you working for a fascist organiza-
tion? Just kidding. In those situations where uniformity is enforced across the
entire company, you can provide absolute specifications, but such situations
are relatively rare.

To play devil’s advocate here, I would advise that you not worry yourself too
much about how your Web pages look on various devices. I realize that most
books on CSS — and certainly the theorists and committees that wrestle with
CSS standards — are very troubled by “browser independence.” They want
CSS styles to not only be scalable (stretch or shrink to fit various screen sizes),
but to also display your page designs, colors, and other effects the same way
on different browsers and even all the old versions of all those browsers.

One big problem with this theory is that when you try to put browser- and
device-independence into practice, you’re often forced to accept the lowest
common denominator. In my view, you should design Web pages for Internet
Explorer (IE) version 6 running on a typical 17'' monitor. Why? Here are the
reasons:

� More than 95 percent of the people visiting your Web site use IE 6.

� You can take advantage of lots of cool effects that work only in IE or IE 6.

19Chapter 1: CSS Fulfills a Promise

05_584251 ch01.qxd 2/10/05 11:02 PM Page 19

� Your job is much easier if you’re designing for a predictable, stable
canvas.

� A design that works equally well on a PDA screen and a computer moni-
tor is rare indeed, and many more users access your Web pages with a
desktop computer than a PDA.

True, several years ago, Internet users were divided between Netscape and
IE, so you had to take Netscape and its peculiarities into account. No more.
At least for now, the browser wars are over, and Netscape is merely a small,
marginal player these days.

Designers Want to Design
It’s not surprising that designers, not to mention marketing people, want to
build attractive Web pages. Color, transition effects, and even various kinds of
animation and other special effects are all desirable attributes and, designers
say, necessary goals in a competitive world.

Designers have worked for years with feature-rich image manipulation tools
such as Photoshop and powerful page design tools such as PageMaker. In
the early years of the World Wide Web, designers saw no reason why they
shouldn’t be able to manipulate Web pages with the same freedom. True,
animation adds considerable complexity, and there’s always the possibility
of future multi-platform conflicts for Web design, requiring that you some-
times design for more than one platform.

But regardless of the daunting obstacles, the goal remains to make Web sites
as compelling, entertaining, and beautiful as possible. CSS is clearly a step in
the right direction. Designing for a predictable target platform such as Internet
Explorer 6 makes design far easier, and the results far more attractive.

With CSS, a designer can accomplish many things that are either difficult or
impossible using ordinary HTML. For example, just a few of the tasks you can
accomplish via CSS are:

� Customizing text indention

� Creating fades, dissolves, and other transitions between pages

� Gaining additional control over formatting, such as adding frames
around blocks of text

� Precisely positioning or tiling background graphics

� Being highly specific about point size and other measurement units such
inches when describing the size and position of graphics or text

20 Part I: The ABCs of CSS

05_584251 ch01.qxd 2/10/05 11:02 PM Page 20

� Managing margins effectively

� Manipulating with great precision character and word spacing, in addi-
tion to kerning (adjusting the spacing between lines of text), leading
(space between lines), and justification

� Providing unique navigation tools for the user

� Specifying the z-axis (what is “on top”) for layers of text and graphics

21Chapter 1: CSS Fulfills a Promise

Understanding the digital effect
Those of us who work within the digital domain
are just beginning to realize what a profound
difference digitization makes. A digital camera
memorizes a mathematical pattern of pixels.
With film, you can manipulate the picture only
grossly — with techniques such as over expo-
sure, solarization, scratching it with a knife, cut-
ting and pasting, or superimposing two
negatives. These and other analog effects are
extremely crude compared to digital effects.
Digital manipulation can be as complete, as
subtle, and as refined as reality itself. You’ve
doubtless seen those short animations where
one object transforms into another — a boy into
a girl, an ostrich into a Buick, and so on. This
illustrates the total manipulability of digital infor-
mation. Given that you can easily control every
pixel in a digital photo, you can transform any-
thing into anything else. What’s more, you have
the ability to modify an image infinitely.

It’s no longer a world of compromises, with less-
than-special effects like Claymation, stop-
frame, scale models, and so on. These have
become quaint historical techniques.

It is no longer a matter of whether you do some-
thing on screen: It’s just a matter of how much
it costs and how long it takes. New cartoons
like The Polar Express and Finding Nemo

demonstrate that digital effects are increasingly
easy to achieve.

Artists are now getting control over the auditory
(music) and visual realms (movies and photos)
that publishers got over the typographic realm
when Guttenberg invented moveable type. No
longer must things be done clumsily by hand,
like monks lettering and designing pages of the
Bible, one Bible at time. Instead, with digital
effects, you can, for example, effectively add a
shadow to a visual element by merely selecting
the object and then clicking a button to add a
semi-transparent shadow. What makes all this
so easy is that every tiny dot in the photo is rep-
resented as a set of numbers. And numbers,
unlike film negatives, can be endlessly and pre-
cisely manipulated in any way. Adding a
shadow is a matter of figuring out the mathe-
matical function that adjusts pixels to make
them look shadowed. This, and countless other
visual functions, has been worked out by the
people who developed Photoshop and other
graphics applications. (One approach is to have
the computer analyze a real shadow to see its
mathematical gradient and other qualities.)
So, if you have a particular background effect in
mind for your Web page, you can achieve it —
if you have the experience and skill to go about
digital manipulation.

05_584251 ch01.qxd 2/10/05 11:02 PM Page 21

Where CSS Fits with the
Tools You Already Use

You can write a style sheet using any plain text editor, such as Notepad.
However, you can also use specialized CSS editors that offer shortcuts to
the creation of a style sheet. With editors like Microsoft’s Visual Studio or
TopStyle Pro from Magia Internet Studio, you can, for example, choose a text
color from a palette, drag and drop a graphic from a toolbox, or select a font
size from a list. Then the editor automatically translates your choices (gener-
ally made by dragging and dropping or clicking with the mouse) into the text
descriptions that make up a style sheet. For such activities as moving page
elements around to find the most attractive layout, mouse dragging can be a
real time-saver.

If you open a CSS file, and you’ve been using Microsoft’s Visual Studio on
your computer, by default, the CSS is displayed in Visual Studio, as shown in
Figure 1-1.

Many Web programmers use Visual Studio and its ASP.NET features to create
richly interactive Web sites. But artists and designers can also use Visual
Studio to create CSS files. As you see in Figure 1-1, this style sheet specifies a
text box, an image, and a background image. On the left is an abstract view
(an “outline”) of the style sheet; on the right is the actual, editable code. If

Figure 1-1:
CSS files

can be
managed

within
Microsoft’s

Visual
Studio.

22 Part I: The ABCs of CSS

05_584251 ch01.qxd 2/10/05 11:02 PM Page 22

you want to add some more style definitions, nothing could be simpler. You
don’t have to write the code yourself. Just click the Build Style button and the
Style Builder dialog box opens, as shown in Figure 1-2:

Click any of the categories on the left — such as Background, Position, or
Lists — and you see a new dialog box with additional options.

To start from scratch and create a brand-new style sheet, choose File➪
New➪File and double-click the Style Sheet icon.

To create a new style by associating it with an existing HTML element such as
<h2>, choose Styles➪Add Style Rule. The Add Style Rule dialog box opens,
as shown in Figure 1-3:

Figure 1-3:
Use this

dialog box
to introduce
new styles.

Figure 1-2:
Create new

styles the
easy way,
with Style

Builder,
a feature
of Visual

Studio.

23Chapter 1: CSS Fulfills a Promise

05_584251 ch01.qxd 2/10/05 11:02 PM Page 23

Remember that when you add CSS to your Web design bag of tricks, you don’t
simply abandon HTML. Instead, CSS allows you to modify HTML’s tags. In some
cases, however, you might find that you want to use some of CSS’s features
rather than the traditional HTML. For instance, many people think it’s better
to use CSS positioning tools rather than relying so heavily on tables like clas-
sic HTML. Similarly, you might decide to abandon the venerable HTML
tag in favor of the more powerful and refined text descriptors available in CSS.

Above all, don’t be intimidated. CSS is not conceptually difficult, nor is it hard
to use in practice.

Getting Practical
Perhaps the single biggest leap of faith that Web page designers must make
is to think beyond HTML when using style sheets. Many computer programs
support HTML — even Office 2003 applications such as Word have Web Page
Preview and Save As Web Page options on their File menus. But with CSS, you
need to augment your current Web page design habits and tools into a bit of
abstract thinking. Academics would say that CSS is primarily a system that
allows you to define abstract classes that can be applied with practical results
in Web page design. I say that CSS makes design easier.

Look for CSS features in your
current software
Doubtless you’ve used at least one application to build HTML that ends up
as a Web page. If you’re comfortable with a particular Web page design tool,
go ahead and continue using it. But check to see if there are any features in
your current software that support CSS. Search the product’s Help Index for
CSS — possibly you’ve never noticed a CSS tool sitting right there all the time.

Resources on the Web
As an alternative, you can use popular programming editors like Visual
Studio, or dedicated CSS editors, to analyze existing Web pages and abstract
CSS style sheets from them — or build a CSS file from scratch. If you don’t yet
have access to any CSS tools, take a look at the following tip:

You can find many CSS designer tools — some for free — on the Internet.
Check out the list of CSS authoring tools at this W3C Web site: www.w3.org/
Style/CSS/. On the topic of CSS Resources, you can often find useful answers
to your questions about CSS at this newsgroup: comp.infosystems.www.
authoring.stylesheets.

24 Part I: The ABCs of CSS

05_584251 ch01.qxd 2/10/05 11:02 PM Page 24

Of course, there’s always Microsoft’s Web site. At the time of this writing,
Microsoft’s main CSS index at this address: http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/vsintro7/html/vxtsk
WorkingWithHTMLStyles.asp. However, Microsoft rarely retains a name or
address for its technologies and documentation for long. So you’ll likely need
to look for CSS using the Search feature on the main Microsoft Web page at
www.microsoft.com.

Also, considerable information (although somewhat stiffly, academically pre-
sented) is available at the Web Style Sheets home page sponsored by W3C at
http://www.w3.org/Style.

Finally, take a look at Chapter 19, where several additional online CSS
resources are described.

Avoiding Browser Compatibility
Problems

Early Web page designers faced a peculiar problem: Different Web browsers
interpreted HTML in different ways. In those early days, Netscape was still
widely used. Fortunately — at least for Web designers — today, more than 95
percent of the people visiting Web sites use Internet Explorer (IE). What’s
more, most of them can be expected to use a recent version of IE. This makes
a designer’s life easier. You can expect that most people will see your Web
pages as you intend them to be seen — as long as you stick to the specifica-
tions and capabilities of the current version of IE.

Many books on CSS spend quite a bit of time listing and describing the incom-
patibilities between Netscape and Internet Explorer — demonstrating the dif-
fering ways that these browsers implement CSS features. Another potential
source of incompatibility derives from the differences between operating sys-
tems, namely PC and Mac.

But consider the worst case: What happens if a CSS feature is used in your
Web page code, but it isn’t supported by a user’s browser or OS? Nothing
happens. Unlike programming languages — with their often baffling error
messages that can scare users — browsers are designed to hide problems
from their users. The user never sees an error message saying: “This CSS
style is unsupported by Netscape.” Instead, whatever special effect you were
trying to achieve by redefining an HTML element with CSS is simply ignored.
If you had redefined <h1> as a blue headline, that redefinition is ignored and
the default black is just used instead. If CSS is controlling positioning, how-
ever, the results can be less benign. But, again, the damage is limited to those
few people not using IE.

25Chapter 1: CSS Fulfills a Promise

05_584251 ch01.qxd 2/10/05 11:02 PM Page 25

Browser compatibility isn’t nearly as much of an issue now as it was a few
years ago when Netscape was more popular. And Mac computers, too, repre-
sent a small portion of today’s computer market. Fair or not, the browser
wars and the OS wars have settled into at least a temporary truce — and Web
designers can benefit from the single primary platform they can build for.

Nonetheless, some Web site designers must wrestle with the compatibility
problem. If the issue concerns you, take a look at Chapter 17, where I discuss
various strategies you can employ to at least minimize — if not prevent — the
damage done to your great designs by minor or simply out-of-date browsers.

Getting Dramatic with Filters
To give you a taste of how effective and powerful special browser effects can
be, take a look at a few filters you can add to your Web pages. Filters are a set
of special animated effects that Microsoft built into Internet Explorer.

Type this into Notepad or your choice of CSS editor:

<html>
<head>

<style>

div.box {width: 300px; height: 200px; padding: 30px;
font: 46pt times new roman;}

</style>

</head>
<body>

<div class=”box” style=” filter:
progid:DXImageTransform.Microsoft.Alpha

(Opacity=100,
FinishOpacity=0, Style=1, StartX=0, FinishX=0, StartY=0,
FinishY=100)”>

Hey...you can modify opacity.</div>

</body>
</html>

Now save it to a file named opac.htm, and then double-click on that filename
in Windows Explorer. Your Internet Explorer window should open, displaying
the text with its opacity adjusted from 0 (can’t see through it at all) to 100
(can see through it completely), as shown in Figure 1-4.

26 Part I: The ABCs of CSS

05_584251 ch01.qxd 2/10/05 11:02 PM Page 26

Notice in Figure 1-4 that a gradient is created, gradually fading the text. In
effect, what’s happening here is that the background (by default white) is
simply showing through more and more because the text is increasingly
transparent.

So what, you might say? I can get the same effect by writing some text in a
graphics program like Photoshop, and then applying an opacity gradient. I
can then save this text as a graphic file and just import it into my Web page
as an image. Sure, you can do that. But creating a CSS style to accomplish the
same thing has several advantages. You can apply that style easily to any
additional text blocks in your Web site by merely using additional <div> tags.
What’s more, with a little extra programming, you can cause these kinds of
effects to become animated — to be dynamic. For instance, you could use the
opacity filter to fade some text, or a graphic, slowly in or out of the page. You
could allow items to gently fade in or out in response to something the user
does with the mouse. Or how about having entire sections or pages fade rela-
tively rapidly as a transition effect to the next section or page? Lots of cool
effects can be achieved when you add a little scripting and some timers to
various filters.

Sure, filters are only built into Internet Explorer (version 4 and later). And,
technically, they’re not exclusively a CSS effect — although CSS does make
using them easier. But so what? Filters are increasingly being used by Web
page designers as a way of competing with television. Just as adding color
was a real improvement over black and white Web pages, so, too, is anima-
tion a significant improvement over static pages.

Figure 1-4:
You can

adjust
opacity

to suit
yourself by
applying a
CSS style.

27Chapter 1: CSS Fulfills a Promise

05_584251 ch01.qxd 2/10/05 11:02 PM Page 27

Try a new trick. To create a different gradient — a circular one this time — just
make two little changes to your HTML code (shown in boldface). You want to
change the opacity style attribute from 1 to 2 (this changes the gradient to
a circular effect), and provide a color background so you can more easily see
the circular radiation of the gradient:

<html>
<head>

<style>

div.box {width: 300px; height: 200px; padding: 30px;
font: 46pt times new roman;}

</style>

</head>
<body>

<div class=”box” style=”background: green; filter:
progid:DXImageTransform.Microsoft.Alpha

(Opacity=100,
FinishOpacity=0, Style=2, StartX=0, FinishX=0, StartY=0,
FinishY=100)”>

Hey...you can modify opacity.</div>

</body>
</html>

Save this HTML to an .htm file, and then double-click it in Windows Explorer
to load it into IE. You see that the gradient has become circular, as shown in
Figure 1-5.

You’ll find lots of special effects you can employ built into IE, several of
which you explore in Chapter 13. There are shadows, inversions, reversions,
conversions, and a few mild perversions thrown in for the Goth crowd.

As an example of the great variety of effects available via filters, consider
transition wipes. Transition wipes — just one of many kinds of effects you
can use — provide smooth connections between two elements. These wipes
are used in films and video as a way of moving from scene to scene, indicat-
ing moving through space or the passage of time, or some other transitional
behavior — such as between reality and a dream. You can use them in Web
pages for similar purposes. To give you an idea of just some of the effects
you can employ, Table 1-1 shows a list of transition wipes.

28 Part I: The ABCs of CSS

05_584251 ch01.qxd 2/10/05 11:02 PM Page 28

Table 1-1 Transition Wipes
Transition Wipe Value

Box in 0

Box out 1

Circle in 2

Circle out 3

Wipe up 4

Wipe down 5

Wipe right 6

Wipe left 7

Vertical blinds 8

Horizontal blinds 9

Checkerboard across 10

(continued)

Figure 1-5:
Change the

opacity
Style to 2 to

create
circular

gradients.

29Chapter 1: CSS Fulfills a Promise

05_584251 ch01.qxd 2/10/05 11:02 PM Page 29

Table 1-1 (continued)
Transition Wipe Value

Checkerboard down 11

Random dissolve 12

Split vertical in 13

Split vertical out 14

Split horizontal in 15

Split horizontal out 16

Strips left down 17

Strips left up 18

Strips right down 19

Strips right up 20

Random bars horizontal 21

Random bars vertical 22

Random 23

You can combine or blend various effects to generate new effects. I won’t say
“The possibilities are endless — you’re only limited by your imagination,”
because that’s the single most tedious cliché of the computer age. But you can
sure do some great visual stuff with CSS and Internet Explorer. If you can’t wait
to get to the discussion of dynamic animation tricks, flip over to Chapters 13
or 16 and dive in.

30 Part I: The ABCs of CSS

05_584251 ch01.qxd 2/10/05 11:02 PM Page 30

Chapter 2

Getting Results with CSS
In This Chapter
� Starting from scratch

� Introducing selectors and grouping

� Creating all-purpose properties

� Managing ID selectors

� Cascading style sheets

� Visualizing specificity

� Exploring inheritance

This chapter introduces several somewhat theoretical concepts central to
understanding CSS. But rather than tire you with boring, abstract expla-

nations of boring, abstract concepts such as inheritance and specificity, I’m
going to entertain you with brief examples and a clever, painless presentation.
You’ll never know what hit you. Nonetheless, after you try the examples in
this chapter, you’ll have an almost subconscious understanding of the main
theoretical concepts behind CSS.

So, roll up your sleeves and get ready to see how fun CSS can be. Never mind
that you’re also find out about some CSS theory at the same time. The theory
comes in through the back door while you’re otherwise amused by the inter-
esting examples.

Starting from Scratch
You can write CSS using any plain text editor. Like XML and other contempo-
rary computer languages derived from HTML, CSS makes no attempt to
create some strange, specialized code language that cannot be easily written
or read as simple, English text.

Of course, specialized CSS editors can assist you in various ways, particularly
if you want to build heavy-duty, complicated Web sites. But, for now, I start off
with very simple examples of CSS in action. And to create these examples, you
use nothing more sophisticated than Windows’s down-to-earth little Notepad.

06_584251 ch02.qxd 2/10/05 11:02 PM Page 31

A style sheet is often written and saved as a .css file on the hard drive.
Thereafter, any HTML (.htm) Web page document that wants to use the styles
defined in the .css file merely references it as a “link.” You see how to link
HTML to a CSS file in a minute.

Run Notepad (if you use XP, choose Start ➪ All Programs ➪ Accessories ➪
Notepad). Then type this in to define an ultra-simple style that tells a Web
site how you want paragraphs of text displayed:

p
{
color: blue;
text-align: right;
font-family: courier;
}

Save this style sheet by choosing File ➪ Save As in Notepad, and then naming
the file ParaStyle.css. You can use any name you want, but you need to refer-
ence that name in your Web page’s HTML code. To do so, delete everything in
Notepad, and type in this HTML page that references your ParaStyle.css style
sheet file:

<html>

<head>
<link type=”text/css” rel=”stylesheet” href=”ParaStyle.css”>
</head>

<body>

<H1>Headline Text</H1>

<p>This is body text</p>

</body>

</html>

Use Notepad’s File➪Save As feature to save this code to a file named
PStyle.htm in the same directory where you saved the ParaStyle.css file.

This highly simplified Web page code illustrates how an external style sheet
file works. In the .css file, you specified that the <p> (paragraph) element
should be blue, right-aligned, and in the Courier typeface. In your HTML
code, you linked to a style sheet named ParaStyle.css. This style sheet is
located in the same directory as the .htm file.

You have not defined a style for the H1 headline style, so it defaults to the
browser’s standard size, color, position, font (and perhaps other qualities) for
the H1 style. With the Internet Explorer defaults, the headline is left-aligned,
black, and a serif font.

32 Part I: The ABCs of CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 32

But you did specify a style for the paragraph tag. So, to see this style in
action, double-click on the Web page’s filename, PStyle.htm, in Windows
Explorer. The page automatically loads into Internet Explorer and displays
the default headline style, and your modified paragraph style, as shown in
Figure 2-1.

Selectors and Such: CSS Syntax
The committee that developed CSS didn’t take the simple approach and use
existing HTML terminology. Instead, they invented special, new CSS words
for familiar HTML concepts such as tag and attribute. Who knows? Perhaps
they had a reason for this, but it does require you to get used to some new
jargon.

Each CSS style rule is divided into three parts: the selector, the property, and
the value, punctuated with braces around the property/value pair, like this:

{property: value pair}

Also, the property is separated from the value by a colon. A complete CSS
rule looks like this:

selector {property: value};

Here’s a real-world example of a CSS style. It defines the HTML paragraph <p>
element as having a value of blue for its color property:

p {color: blue};

Figure 2-1:
The

paragraph
of body

text is
right-

aligned,
blue, and
displayed
in Courier

font — just
as your

style sheet
specifies.

33Chapter 2: Getting Results with CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 33

The CSS selector is what in HTML is called the tag or element — the items
in HTML code that are surrounded by angle brackets (such as <h2>, <p>,
or <tr>).

A single CSS rule is made up of a minimum of three parts:

� The selector, such as p, which tells the browser which HTML tag
(elements) the rule should be applied to later in the HTML code.

� The property, such as color. This is what HTML calls an attribute.
Usually it’s the name of a quality of an element, such as its height,
font-style, color, and so on.

� The value of the property, such as blue. This is the actual data specify-
ing the change you are making to the appearance (usually) of the ele-
ment, such as 45 pixels, Times Roman, or yellow.

The preceding list describes the simplest CSS rule. You can however, group
multiple selectors for a single style (h1, h2, p can all be specified in a single
rule as green, for example). Likewise, you can group multiple properties in a
single rule, as I did in a previous example:

p {
color: blue;
text-align: right;
font-family: courier;
}

Like HTML, CSS code can be freely rearranged whatever way suits you — lines
can be formatted in any fashion. The following rule is interpreted identically
to the previous example:

p {color: blue;
text-align: right; font-family: courier;}

These two rules mean exactly the same thing to the browser, but CSS pro-
grammers have their personal preferences about formatting.

Properties refer to attributes
The CSS property is what HTML calls the attribute — the name of the quality
that you are specifying (such as color or font size). Many computer languages
also use the term property in this same way.

Finally, the CSS value is the actual data about the property: In other words,
black or green can be values of the color property. The value in CSS is the
same concept as the value held in a variable or constant in computer pro-
gramming. Computer programming languages use the term value in the same
way that CSS does.

34 Part I: The ABCs of CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 34

Some values are described with more than one word, such as minty green
rather than green. When you have a multi-word value, enclose the value name
in quotes:

p {color: “minty green”;}

This notation is similar to how some database software handles
multi-word terms.

Also, if you define more than one property for a selector, separate those
properties with semicolons, as in the sample CSS style you used earlier in
this chapter:

p
{
color: blue;
text-align: right;
font-family: courier;
}

You can format a CSS style any way you wish. The braces serve as delimiters
(or separators), so the browser knows that a selector’s properties end when
it comes upon a close brace symbol (}). Some people like to put each prop-
erty on its own line to make it easier to read.

Grouping
If you wish, you can define a whole bunch of tags (selectors) all at once. This
can save time if you want all your headline elements, for example, in an Arial
typeface. HTML has four headline elements: H1, H2, H3, and H4. Instead of
defining each different headline element as a separate style in your CSS file,
just pile the selectors all together, separated by commas. In this example,
headline sizes from heading 1 all the way down to heading 4 are defined
as Arial:

h1,h2,h3,h4
{
font-family: Arial;
}

Showing Some Class
What if you want to subdivide a given tag (selector) style into several alterna-
tives? It’s similar to dividing your Recipes collection into sub-categories like
Chinese, Mexican, Thai, and so on.

35Chapter 2: Getting Results with CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 35

Say that you want most paragraphs in your document to be black, but you
want to emphasize a few paragraphs by displaying them in red text. It’s easy
to do that by adding a class definition to a selector, like this example. Here I
define a bodytext class and an alert class for the p selector:

p.bodytext {color: black;}
p.alert {color: red;}

Object-oriented computer languages use a similar punctuation when specify-
ing classes and their properties — dividing the code using periods to separate
class from property.

Use whatever word you want as a class name. Instead of p.alert, you can
use p.emphasis or p.bridgette or whatever. The only requirement is that
once you’ve defined the style using a particular term, you must later use that
same term again when you invoke that class in the HTML. If you’ve defined a
red text paragraph as p.alert in your style sheet, any time you want to
invoke it in your Web page code, you must refer to it as p class “alert”).
Also, reading your code is obviously easier if you choose terms that have
some meaning relating to the end result. For this reason, I suggest that you
avoid naming your classes Bridgette.

When choosing a name for a class, try to name it after what it does rather
than how it looks. Instead of using p.red above, I used p.alert because
alerting the reader with red text is the behavior or purpose of this class, not
merely its appearance. I could later decide to make all alerts boldface instead
of red. Having named this class red would be a problem if I later did change
this style to boldface. I couldn’t sensibly allow class=red to turn text bold-
face and leave it black. To keep the code understandable, I would have to go
through the entire HTML code for my Web site and change each and every
use of the class name red throughout the HTML files. That would be defeat-
ing the purpose of one of the primary values of CSS: That you don’t have to
search and replace through an entire Web site to make changes to the
appearance of your various styles.

After you’ve specified your members of the p selector class, you can refer to
them in your HTML document like this:

<p class=”bodytext”>
This one is black.
</p>

<p class=”alert”>
This is red.
</p>

36 Part I: The ABCs of CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 36

Specifying All-Purpose Properties
You don’t always have to attach a class to a tag. You can specify a generic
class that can be applied to any kinds of tags in the HTML code. This way,
you can avoid having to assign, say, a specific blue color value to each tag
that you want to display in blue. You can just assign the blue class whenever
you want some element to be blue. (This saves time because styles can be
complicated and lengthy, and you only have to specify a CSS rule once.
Thereafter in the HTML code, merely use the rule’s class name instead of
having to repeat all the properties and values in the rule.)

For example, if you want to be able to turn any kind of text blue to highlight
it, leave out the selector name, omit the p in p.blue {color: blue} when
you define the “highlight” class in the CSS file. The following is a generic class
definition of blue:

/* This class can be used with any HTML tag */

.highlight {color: blue;}

Now, any HTML element that uses class = highlight turns blue:

<html>
<head>

<link type=”text/css” rel=”stylesheet” href=”ParaStyle.css”>
</head>

<body>

<p class=”highlight”>
I’m blue body text.
</p>

<h2 class=”highlight”>
I’m a BLUE HEADLINE
</h2>

</body>
</html>

If you want to make only part of a paragraph blue, use the tag, like this:

<p>I say again, and I use blue for
emphasis here that you need to remember the
lesson plans</p>

37Chapter 2: Getting Results with CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 37

Just remember that when you use class selectors, you don’t have to define
each particular tag as blue in your CSS file. You instead define a “highlight”
class having a blue value for its color property, and then just use class=
”highlight” throughout your HTML code whenever you want any element
to be blue.

If you want to add comments within a CSS file, enclose the comment between
/* and */ symbols. The purpose of commenting your code is to make it
easier for you to later read and modify it, or for others to modify your code
after you have, say, left the company. You can instantly read the purpose of,
or technique used with, the commented code:

/* This class can be used with any HTML tag */

These symbols are awkward because they’re so similar to each other, but yet
not identical. A variety of other, more easily typed, and more convenient
punctuations could have been chosen. A good choice would have been the
single quotation mark ('). But committees designed CSS, so you get inefficien-
cies from time to time. All in all, CSS is certainly worthwhile, but you might
end up wishing that it didn’t have so many qualities derived from C program-
ming languages. This is the way C programmers add comments to their code,
and C is notorious for being the most difficult, often the most inefficient, of all
computer languages.

Using an ID Selector
ID selectors are similar to generic classes — they, too, are independent of
specific document elements. But IDs differ from a class in that an ID is sup-
posed to work only once on a give Web page — only a single element (the one
with the ID) is supposed to be affected. Any references further down in HTML
code to an already used ID are supposed to be ignored. Why am I using the
phrase “supposed to” so much here? Because ID selectors don’t work as
advertised. In practice, browsers just ignore this “use it only once” rule. For
example, I tried this code in Internet Explorer, and the browser didn’t enforce
the “only once” regulation; all three elements with duplicate IDs get high-
lighted here:

html>
<head>

<style>
#highlight {color: yellow; font-style: italic;}
</style>

</head>
<body>

38 Part I: The ABCs of CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 38

<p>ordinary default text </p>
<p id=”highlight”>highlighted text </p>
<p id=”highlight”>second attempt to use this id fails
</p>

<h1 id=”highlight”>highlighted text </h1>

</body>
</html>

All three uses of HIGHLIGHT in this example turned the lines of text yellow
and italic when I loaded this file into Internet Explorer. What gives? Just the
usual. Somebody makes a rule, and somebody else ignores it. In any case,
perhaps ID styles will be useful in CSS at some future date, so at least take a
brief look at them. (ID attributes in HTML code are very useful if you’re using
ASP.NET or other programming such as scripting. In those cases, the ID
allows your programming to affect elements by specifying their unique ID
attribute. IDs also play a role in building templates. More on scripting in
Chapter 16.)

You use the hash symbol (#) to create a CSS ID rule. This next example puts
the CSS definition right in the header of an HTML page. This is called an inter-
nal style sheet. You can use this option instead of creating a separate CSS file.
External, separate CSS style files are considered the best practice for most
Web sites, however, because they can enforce rules across multiple pages,
and also make it easy to modify the rules in one place only.

For convenience in illustrating CSS in this book, I almost always put style defi-
nitions in the header of an HTML page. This way, everything — the definition
and its use — is together in the same file. And I also omit some useful, but
unnecessary, elements in the HTML such as the <title>. These simplifica-
tions make it easier for you to see the idea being illustrated in the code,
without unnecessary distractions like two separate files and extraneous
HTML code.

In this example, an ID style named HIGHLIGHT is created in the header and
then used in the body of this Web page where the ID is referenced.

<HTML>
<head>

<style>
#highlight {color: yellow; font-style: italic;}
</style>

</head>
<body>

39Chapter 2: Getting Results with CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 39

<p>ordinary default text </p>

<p id=”highlight”>highlighted text </p>

</body>
</html>

Specifying more than one class
You can use multiple class names in a single HTML element. For example,
you can create separate class rules (one for framed and one for pink) and
then combine them by naming them in an element’s class attribute in the
HTML like this:

<p class=”framed pink”>

For an explanation of how this works, and a code example illustrating it, see
the section in Chapter 18 titled “Combining Classes.”

Capitalizing on case-sensitivity
HTML and CSS code is (usually) not case-sensitive. Tag names, attribute names,
and so on can be capitalized any way you wish — and the browser still under-
stands that you’re referring to a single entity. For example, BODY, Body, body,
or BoDy all are allowable body tags and can be used interchangeably.

As always, though, someone decided to get a little funny with this sensible
case-insensitivity rule. In HTML or XHTML (eXtensible HTML, which is XML
blended into HTML), ID and class values are case-sensitive. The CSS style def-
inition’s capitalization must match the capitalization in your document. The
following CSS style

p.yellow {color: yellow;}

doesn’t match the use of Yellow in this line in the document (the Y is upper-
case). This line is not yellow, because the style is not applied:

<p class=”Yellow”>This is black!</p>

Another exception to the usual case-insensitivity of CSS and HTML is the
value of a TYPE attribute in an OL (ordered, numbered list) element. It is case-
sensitive.

40 Part I: The ABCs of CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 40

Just stay in lowercase
In practice, most people, usually, try to write their programming, HTML, CSS
and other code entirely in lowercase. For one thing, it’s just easier to type. For
another thing, if case-sensitivity is in force, you won’t run into any problems
(or hard-to-track-down bugs) simply because you goofed up and used using
uppercase here and there. XHTML, in fact, requires all lowercase.

Additional case-sensitive exceptions are escape sequences beginning with an
ampersand (&) and Internet addresses (URLs). Not all URLs are case-sensitive,
but some are. This kind of confusion and inefficiency is really all too tedious
and unnecessary. One day, we programmers will get our collective act together
and insist that case-insensitivity be required in all computer programming
situations.

When Styles Cascade
What does the term cascade mean for style sheets? It means that a CSS rule
tumbles down through the code, and sometimes bumps into a conflicting rule.

The cascade is about what programmers call precedence: Who wins
when there’s a conflict? More than one style can apply to a given tag. For
example, there’s always the default browser-defined style, such as black as
the default text color. If you specify some other color in a CSS rule, the
cascade allows your rule to dominate, to have precedence over the built-in
style.

But how does the browser decide which style wins out if two CSS rules con-
flict with each other? Should the conflicting styles be combined? What if the
styles are completely incompatible — such as one style specifying italic and
the other non-italic?

Visualizing specificity
Several factors determine which style wins out when styles collide: inheritance,
the structural tree in a document, and the specificity (or closeness) of a style
(I explain these concepts later in this section). Probably the most easily
understood collision rule involves where the style was defined. Your CSS
styles can be defined in four major locations:

41Chapter 2: Getting Results with CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 41

� The browser’s default styles.

� An external style sheet (a .css file containing style definitions that is
referenced from within the HTML document with a Link element).

� An embedded style sheet (styles defined within the HTML document,
inside its <head> tag. This kind of style is also sometimes called internal).

� An inline style (a style defined as an attribute within an HTML element
itself, and whose effect is limited to that element only). For example, this
is a typical inline style:

<p style=”border-bottom: blue”>

This list also illustrates the order in which conflicting styles “win” in any con-
flict. Think of the order as the style closest to the element wins. For example,
the inline style — nestled right inside the element itself — is the closest. So
if more than one style is specified for that element, an inline style is the style
used. This closeness of the style to the element that matches it is more for-
mally known as specificity.

The style location with the second highest priority is the internal style sheet
located in the HTML document’s header. The third highest priority goes to the
external style sheet — the separate file. And the weakest priority, the one that
all the others trump, is the default style. After all, the default is the look that
a style sheet is supposed to alter.

Here’s an example illustrating how IE decides between blue and red colors:

<html>
<head>
<style type=”text/css”>

p {color:red;}

</style>
</head>

<body>

<p style=”color: blue;”>i guess i’m blue. </p>

</body>
</html>

To test this document, type the HTML code into Notepad, and then save it
using the filename EmTest.htm. Load this Web page by double-clicking its file-
name in Windows Explorer. You’ll see the sentence I guess I’m blue appear in
blue. The <p> element here was defined in two conflicting ways. In the
embedded style, it’s defined as red, but that definition is overridden by the
inline definition of the color blue.

42 Part I: The ABCs of CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 42

Try removing the inline style to see what happens. Change the line to

<p>I guess I’m blue. </p>

Retest it by resaving the Notepad file you just modified.

No need to double-click again on this filename in Windows Explorer to load
the new version into IE. After you’ve loaded a document, it’s the default
address in IE — in this case, an address of an .htm file on your hard drive.
If you modify that file as you just did in this example, all you have to do to
see the modification is to press F5. That “refreshes” IE.

Some people prefer to use the browser’s built-in source view as a quick way
of modifying and retesting CSS code. Choose View➪Source. You can make
changes to the code, and then save it. Both Netscape and Firefox highlight
the syntax, which some programmers find useful.

After you load the new version of this document into IE, the line I guess I’m
blue is now displayed in red. The conflict between the embedded and inline
style definitions has been resolved because you deleted the inline style.

You can override the normal rules of priority by using the !Important
command to specify that this style must be used, no matter what. An
!Important declaration overrides all other style definitions. You add the
command like this:

p {color: blue !important;}

In CSS1, styles declared important by the author of the Web page override
even any styles that the reader has declared important (yes, a Web page
reader can specify styles too, as you see later in this book). However, in CSS2,
important reader styles win out over important author styles, and indeed
over any author styles, whether marked important or not.

Understanding CSS specificity
The term specificity is also used to describe a second way that a browser cal-
culates which style wins when styles conflict. First, the browser looks for
closeness — but what if the closeness is identical? That’s when this second
technique is applied.

Imagine, for example, that two different style sheets are referenced by the
same HTML document (yes, you can attach more than on CSS file to a given
Web page’s HTML code). But, in one of these sheets, H1 is styled bold, and in
another sheet it’s styled italic. What’s the poor browser to do in this case?
Which specification wins?

43Chapter 2: Getting Results with CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 43

Unlike the examples of style collision earlier in this chapter, where closeness
could be used to declare a winner, here you’ve got both styles located at the
same degree of closeness (the same specificity). Both of these style definitions
are located in external style sheets.

In this case, the browser does a little bizarre math to make the decision
about which style to use. As before, the more “specific” style wins. But what
counts as specificity in this contest? It’s not the same as the “closeness”
factor. The browser has to do a bit of strange calculation, but you really can’t
call this math. It’s just an odd kind of accumulation of values where some
styles have orders of magnitude more weight than others. Don’t bother your
pretty head about this stuff if you don’t find peculiar calculations interesting.

What does the browser do to calculate the specificity of two competing styles
if their “closeness” factor is identical? Three things:

� Looks at a style and counts the number of ID attributes it has, if any

� Counts the number of class attributes, if any

� Counts the number of selectors (you can group selectors in a style like
this: h1, h2, h3)

The browser doesn’t then add these numbers together; it merely concatenates
the digits. Perhaps this is some kind of arithmetic used by aliens in their
galaxy, but I’ve sure never heard of it. Imagine if you got the number 130 by
the following concatenation process:

1 apple, 3 oranges, 0 bananas = 130

This process gives apples ten times the “weight” of oranges, and 100 times
the weight of bananas. Here are a couple of examples showing how it works
when used to determine specificity in a CSS. Just pretend you’re back in
third-grade math class.

Attention, class! What is the specificity number for this selector?

ul h1 li.red {color: yellow;}

Anyone get the answer 13?

The correct answer is 13. You have

0 IDs, 1 class attribute (red), and 3 selectors (ul h1 li)

That “adds up,” so to speak, to 013. Now, kiddies, who can explain how you
get a specificity of 1 for the following selector definition?

H1 {color: blue;}

44 Part I: The ABCs of CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 44

After the specificity has been determined, the higher number wins. Assume
that two styles are in conflict because they both define the color of H1, but
define it differently. But because one definition has a specificity value of 13
and the other has only 1, the H1 headline is yellow, not blue.

What if two rules turn out to have the same specificity? I knew someone
would ask that. In that case (assuming that both are in a style sheet, or
otherwise are the same “closeness” to the HTML tag), the rule that was
specified last wins.

Grasping Inheritance
Chapter 14 goes into inheritance in depth, but here I want to introduce the
idea to you so you won’t be completely flummoxed by some of the behaviors
that CSS exhibits in the examples in upcoming chapters. Flummoxation is an
uncomfortable feeling, as I well know.

You’ve got to get the idea of inheritance into your head if you want to fully
understand CSS. In the computer world, inheritance means that a “child”
object inherits properties or abilities from its “parent” object.

When you specify a style using CSS, styles are applied both to the element
and its “descendants.” For example, if you specify that a <p> element should
be displayed with a green background, most child elements of that <p> ele-
ment will also have green backgrounds. Here’s how it works:

<html>
<head>
<style type=”text/css”>

p {background: green;}

</style>
</head>

<body>

<p>diagrams belong in the box!</p>

</body>
</html>

In this example, a child “inline element” () nestles within a parent
element (<p>). The tag means strong emphasis and results in bold-
face. In this example, the strong text is boldface but also inherits the green
background of its parent element <p>.

45Chapter 2: Getting Results with CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 45

Inheritance is useful because you don’t have to specify that , the
child of <p>, should also be colored green, or have other characteristics of
the parent element. Inheritance is obviously a time-saver with elements such
as lists that have many children. All the children turn green at once because
they inherit that color from their parent.

A few properties are not inherited, however, because it doesn’t make sense
in some cases. For example, you don’t want child elements to inherit the mar-
gins used by their parents. A main purpose of margins is to distinguish parent
text blocks from child blocks, so they should have different margins. Likewise,
borders, padding, and backgrounds are not inherited.

46 Part I: The ABCs of CSS

06_584251 ch02.qxd 2/10/05 11:02 PM Page 46

Chapter 3

Up and Running with Selectors
In This Chapter
� Getting serious about selectors

� Using multiple declarations

� Grasping grouping

� Employing attributes as selectors

� Building your first style sheet

� Getting specific about CSS

Now that you’ve been exposed to the wonders of CSS, you’re unlikely to
continue to write this kind of HTML:

<h3>Warning:</h3>

That’s the kind of line you’d have to write perhaps dozens of times in a Web
site. Say, for example, that you have a series of warnings throughout your
Web site, each preceded by an H3 headline in red. For each headline, you
had to specify that it was red using the element.

Along comes CSS. Now you can create a single H3 selector in a single location,
yet it affects all the H3 headlines throughout the entire Web site. That one style
makes all H3 headlines red automatically. If you later decide to change H3 head-
lines from a red color to simply boldface, no problem. You need to make that
change only once in the style sheet rule instead of dozens of places to H3 ele-
ments scattered throughout the HTML code.

A selector specifies to which element in the HTML code a CSS style rule is
applied. For example, use the selector p if you want a rule applied to HTML
paragraph <p> elements. Or use the selector h1 to define a CSS rule that is
applied to the H1 headline elements in the HTML code. In other words, a CSS
selector is just an HTML element with its < > symbols stripped off. Here’s an
h1 selector (shown in boldface), within a CSS rule:

07_584251 ch03.qxd 2/10/05 11:24 PM Page 47

<style>

h1 {color: red;}

</style>

This rule means that throughout the HTML code, every H1 element gets
selected to have the color red applied to it. Selectors tell CSS what HTML
elements to target for the application of the CSS rule.

But there’s more to selectors than you might have suspected. Consider some
of the additional ways you can use selectors. They’re more versatile than you
might suppose.

Working with Universal Selectors
You might wonder if you can affect everything in a Web site — not just certain
tags, but all tags? You bet. You can use a * to create a universal selector that
has a global effect. Perhaps one day your boss comes in — your boss who has
absolutely no taste or sense of design — and says: “Look. I think we should
make our Web site stand out from the crowd, so let’s make the whole thing
boldface! How about that?”

“You mean all the headlines?”

“No, I mean everything from the little captions to the text to the biggest head-
lines. Everything! What a great idea.”

“Why stop there?” you ask, failing to remember that sarcasm is usually lost
on your boss. “Why not also make the entire background a bright plaid?”

“Hey, I think you’ve got something there!” he says, and goes back to his office
to think up some other subtle ideas. Well, he is the boss.

To make the whole enchilada boldface without the use of a universal selector,
you’d have to create a group of selectors like this:

body, p, table, h1, h2, h3, h4, h5, h6, {font-weight: bold;}

Actually, you’d have to create an even larger group, grouping most of the tags
in your HTML, such as th, td, pre, strong, em, and any others you’ve used
or might use in the future.

Not to worry. Rather than building an enormous group selector, you can just
use a universal selector and change the text of your entire Web site to bold to
make the boss happy, like this:

48 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 48

* {font-weight: bold;}

An asterisk, by itself, is a universal selector. It means, “Do this to all elements
in the document.” Here you’re assigning the font-weight property a bold
value for every element. This is obviously a powerful, yet indiscriminate,
force — not unlike the boss himself.

Many people avoid universal selectors because they can have unintended
side effects involving inheritance. (You probably don’t want hyperlinks to
inherit universal font styles, for example — hyperlinks need to stand out
from surrounding text.) However, if you’ve got the nerve, go ahead and
enforce some mass-rule on your site and try to manage any side effects as
they pop up.

Using Multiple Declarations
Remember grouping? Where you specify more than one selector, followed by
a style that you want all those elements to share, like this:

h1, h2, h3, h4, {font-weight: bold;}

Well, you can also use multiple declarations (the property/value pairs inside
the braces):

h1 {font-weight: bold; font: 18px Courier; color: green;}

The thing to remember when using multiple declarations is to separate them
with semicolons. Spaces are simply ignored by CSS here, so you can’t count
on a space as a way of separating declarations from each other.

Many computer book authors don’t bother with the final semicolon, leaving it
off just before the closing brace (}) like this:

h1 {font-weight: bold}

However, omitting the final semicolon not a great idea. You should simply
always be in the habit of concluding each declaration with a semicolon.
Leaving semicolons out of declaration lists is a very common cause of browser
confusion and errors. Here’s an example where you intend to display H1 heads
as bold, green, 28 point Arial:

<html>
<head>
<style>

49Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 49

h1 {font-weight: bold font: 28pt arial; color: green;}

</style>
</head>

<body>
<h1>a headline</h1>
</body>
</html>

But notice that the semicolon is missing after bold. The result is that Internet
Explorer becomes confused and fails to recognize font: 28pt Arial as a
value that can be used with the font-weight property (which indeed it cannot
be). So the browser simply ignores the font property and the associated 28pt
Arial value. It instead uses the default H1 font instead of the Arial you wanted.
Likewise, the requested size of 28 points is ignored and the default font size is
used instead (which is likely to be smaller than you wanted in this case).

As you no doubt guessed, you can simultaneously group selectors and decla-
rations, like this:

h1, h2, h3, h4 {color: green; background: white; font-family:
Arial;}

Using Attributes as Selectors
CSS2 defines some new selectors, including attribute selectors. Alas, this kind
of selector is not supported by Internet Explorer (IE), but I’ll cover it. Being
familiar with some CSS technologies that IE doesn’t support is still a good
idea in case IE ever does support them.

And, of course, attribute selectors do work with Netscape 6 or 7, Mozilla, or
Opera 5 or 6. What’s more, CSS can be applied to files other than HTML, such
as XML-based files. XML files often endeavor to use “self-describing” attrib-
utes, so these attributes often end up being useful as selectors.

Attribute selectors can expand the utility and flexibility of class and ID attrib-
utes, in addition to allowing you the freedom to try some useful tricks.

For example, recall that when you use class selectors, CSS compares the
selector to each HTML tag — and finds a match only when a class name in
the HTML is identical to a class name in the CSS rule (class names you make
up, such as bodytext, alert, highlight, warning and so on). Here is a
typical class selector. It defines a style (display red) that matches any <p> tag
with class = “alert” later in the HTML:

50 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 50

p.alert {color: red}

In the HTML, this paragraph tag matches the alert class:

<p class=”alert”>
This is red.
</p>

Pause a moment to be sure that you have the terminology straight (it is a
bit confusing). In the following CSS rule, p is the selector, alert is the class
name, color is a property, and red is a value of that property:

p.alert {color: red}

And, in an associated HTML document, here’s an element that matches this
selector:

<p class=”alert”>

In this element, p is the element (or tag), class is an attribute of that p ele-
ment, and alert is the value of the class attribute.

Why is this confusing? Because these items have different names in different
locations. In a CSS file, p is called a selector, but in an HTML file, it’s called a
tag (or element). Also, alert is a class name (in the CSS file), but becomes a
value (in an HTML file). You just have to try to memorize these various cate-
gories and terms, or you can quickly get confused trying to make sense of
CSS. Take a look at Figure 3-1. It compares the terminology in two linked lines
of code: first the CSS rule, and then the HTML where that rule is applied:

A Style Definition in a CSS File

A Matching Element in an HTML Document

Selector

Class name Value

Property

p.alert {color: red}

Element (tag)

Attribute

Value

<p class = "alert">

Figure 3-1:
This figure

illustrates a
CSS rule

and a
matching

HTML
element.

51Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 51

The Simplest Attribute Selector
Attribute selectors come in several varieties. The simplest version merely
looks for an attribute match and ignores the specifics of the attribute. In other
words, in the following code, if a <p> tag has a class — any class at all — a
match occurs. If you want any paragraph with the attribute class = in its tag
to be rendered italic, for example, you create this selector:

p[class] {font-style: italic;}

Notice that here you aren’t defining a class name (such as the alert in
p.alert). Instead, you’re merely specifying [class], which means any class
at all. So, this <p> element in the HTML is italicized because it has a class
attribute:

<p class=”red”>
This is red.
</p>

And this, too, is italicized. It has a class:

<p class=”signal”>
This is an important point!
</p>

Any <p> tag in the entire document with class= as an attribute in its tag —
regardless of the actual value specified following the equal sign — is itali-
cized. That’s the simplest kind of attribute selector.

Another type of attribute selector matches the “value” (the class XML is fre-
quently easy to use with this kind of matching). For example, say that you
run a car dealership’s Web site and the dealer wants every reference to a car
that’s on sale in boldface. Here’s how you can do that:

car[onSale] {font-weight: bold;}

This would cause the text of the first and second (but not the third) elements
in the following HTML to be boldfaced:

<car onSale=”5000”>Chevy</car>
<car onSale=”2999”>Ford</car>
<car>Maxim</car>

Only the Chevy and Ford text are boldface in this example. Why? Because
they have an onSale attribute — that’s how the selector is specified.

52 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 52

To make every element that uses an onSale attribute bold, use the * symbol.
Here’s how to create that kind of attribute selector:

*[onSale] {font-weight: bold;}

You can also select for multiple attributes merely by separating them with a
space.

table[border][width] {property/value}

The following table would match this selector because it does have both
border and width attributes:

<table border=0 cellpadding=0 cellspacing=0 width=100%>

Matching attribute selection types
This attribute selection technique isn’t used frequently, but it can be valuable
when you need to match language values, such as fr to match French. For
example, here’s a selector that specifies a blue color for any lang attribute
beginning with (or equal to) fr. This colors French text blue:

*[lang|=”fr”] {color: blue;}

Then, in the HTML, only one of the following elements turns blue:

<p lang=”fr”>Pouvez vous prospérer</p>
<p lang=”en-us”>May you prosper</p>

You guessed it: The first one is fr, so it’s a match and becomes blue.

Matching partial attribute values
Class names (or values if you prefer) can have more than one word, such as

<p class=”running headline”>

What if you want to match all elements with a class attribute that includes
the word running? You can use a kind of wildcard matching against only part
of a class name. Write this kind of selector:

p[class~=”running”] {color: blue;}

The wiggly tilde (~) means, “Match if this word appears,” regardless of what
other words might, or might not, be there.

53Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 53

Matching exact attribute values
The final variation on the attribute selector technique requires an exact
match to the attribute value. This selector boldfaces only cars with 2999
as their onSale attribute’s value:

car[onSale=”2999”] {font-weight: bold;}

This causes the text of the second (but not the first or third) elements in the
following HTML to be boldfaced:

<car onSale=”5000”>Chevy</car>
<car onSale=”2999”>Ford</car>
<car>Maxim</car>

Building Your First Style Sheet
You’ve experimented with small examples — defining a single selector and
then trying it out on an element or two in HTML code. Now it’s time to try a
somewhat larger example to get a more accurate idea of the power of CSS.
In this example, you create an HTML page, and then modify it via a CSS file.
Finally, you apply two CSS files to the HTML, to see cascading, and specificity,
in action.

An easy way to generate an HTML page to practice with is to write a few para-
graphs (or just copy and paste them) into Word — and then have Word trans-
late them into an HTML document. To see how this works, follow these steps:

1. Run Word 2003.

2. Type three or four paragraphs.

3. Make one paragraph italic.

4. Type a few words on a line by themselves, and then press Enter.

5. Drag your mouse across this text to select it.

6. Choose Format➪Styles and Formatting.

7. Double-click Heading 1 in the list of styles.

The headline style Heading 1 is applied to the selected text.

8. Create a couple of second-level headlines by repeating steps 4
through 7, but instead of choosing the Heading 1 style in step 7,
choose Heading 2.

Your results should look something like Figure 3-2.

54 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 54

Transforming a Word document
into a Web page
Now you should have a simple Word document with a few paragraphs — one
of which is italicized. You also have a couple of first-level heads and a couple
of second-level heads. You now want to save this file as MyFirst.htm. Follow
these steps to create an HTML file out of this document:

1. Choose File➪Save as Web Page.

A Save dialog box appears, asking if you want to save this as an .mht
(single file) Web page. This format is a specialized Microsoft format that
includes lots of extra information about the document — so it can be
edited using all the power of Word. You don’t need all that. You just want
a simple HTML document generated here.

2. In the Save As Type list box at the bottom of the dialog box, click the
down arrow to see the list of file type options and choose Web Page
(*.htm, *.html). Name this file MyFirst.htm.

You’ve now created an HTML document named MyFirst.htm that can be
displayed in a browser.

You may also notice that the text looks smaller when the dialog box
closes and you’re returned to Word’s document view.

Figure 3-2:
This

document
has several

headlines
and

paragraphs
of body text.
How do you

suppose
it looks

marked up
with HTML

code?

55Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 55

3. Choose View and notice that Web Layout is now the active view
instead of the previous Normal view.

Now take a look at your new Web page in Internet Explorer by double-
clicking MyFirst.htm file in Windows Explorer.

Your page appears, but it’s no longer a .doc file. It’s now an HTML file
that a browser can read, understand, and display, as shown in Figure 3-3.

Now you’re ready to take a look at the HTML code behind this page. Choose
View➪HTML Source in Word. A special Microsoft Script Editor opens, display-
ing your HTML in all its glory. Even though this is the “pure” HTML version of
this page (“pure” compared to the .mht version you rejected in step 1 in the
previous step list) — it’s still pretty hefty!

Examine the HTML that Word generated, as illustrated in Figure 3-4:

As you peruse the HTML code, you may notice comments (which Microsoft
uses to force the browser to ignore proprietary stuff, even some script code in
some cases). You also see lots of references to mso, which stands for Microsoft
Office, and many items in XML format defining properties of the document and
other data. Ignore all this. Or if you wish, peruse it for a while, but don’t get
hypnotized because what we’re looking for is further down the page.

Figure 3-3:
This is the

same text as
displayed in

Figure 3-2,
but now

rendered by
Internet

Explorer.

56 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 56

Scroll down until you come to the style section, appropriately colored pink.
Check out the pink section:

strong {color:#400000;}
em {color:#400000;}
p {mso-margin-top-alt:auto; margin-right:0in; mso-margin-

bottom-alt:auto; margin-left:0in; text-
indent:12.25pt; mso-pagination:widow-orphan; font-
size:12.0pt; font-family:”Times New Roman”; mso-
fareast-font-family:Times;}

Notice that both the strong and em selectors here are defined as having a
color with a value of #400000. Because these styles are embedded in this
HTML document, they override any external style sheet we link to the docu-
ment. Embedded styles are closer than external styles to the HTML tags they
are intended to modify. “Closer” styles are also described as more specific.
Therefore, the embedded styles win out if style definitions conflict.

Visualizing levels of specificity
Here are some rules about CSS specificity:

� Child elements (such as a <p> paragraph element within a parent
<body>) inherit their parent’s styles. If <body> has a style associated

Figure 3-4:
This special
script editor
opens when

you ask to
see the

HTML
source

code.

57Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 57

with it that specifies underlining, any <p> elements within that parent
<body> element inherit the underlining. However, if more specific styles
exist on the Web page (such as an inline style), they override the inher-
ited style.

� CSS styles contained within an HTML document (embedded or inline
styles) take precedence over external styles (located in a separate .css
file and referenced in the HTML code with the <link> tag).

� A style with an !Important command takes precedence, regardless of
other factors.

Now, just for fun, try an experiment. Modify this embedded style strong in
the Word-generated HTML code by following these steps:

1. In the Microsoft Script Editor, locate this selector:

strong {color:#400000;}

2. Modify it in the Script Editor to make the color of green, by
changing it to this:

strong {color: green;}

3. Now locate some text in the first paragraph — the text of your docu-
ment is at the very bottom of the HTML in the Editor. Surround a
word or two with the tags, like this:

<p class=MsoNormal>You’ve experimented
with

Notice that once you type the < symbol, the text turns red in the Editor.
This is to cue you that there is an error in the HTML code. As soon as
the code is restored to the correct format (when you type the end >
symbol), the text turns black again, signaling you that all is now well.
Or if not entirely well, at least your HTML code doesn’t have a glaring
error in it.

Before saving this file, notice something cool happening in the Word
document. Switch to Word now. See the Refresh toolbar as shown in
Figure 3-5? Word knows that you’ve edited the HTML, so the current
Web layout view is no longer accurate.

4. Click the Refresh button on the toolbar.

You now see the words that you tagged have turned green,
just as your modified style specified.

5. Choose File➪Save.

The HTML file is now updated to reflect your changes.

58 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 58

6. Switch to IE and press F5.

The page is refreshed when you press F5.

The browser window refreshes by reloading your .htm file, and you see
here too the green words that you requested.

Using Word to create Web pages isn’t difficult. If you have some Word docu-
ments that you want to add to a Web site, using Word’s Save As Web Page
feature comes in handy. Editing the HTML code in the Script Editor built into
Word 2003 is efficient, too: It even has a debugger in the editor.

Creating an External Cascading
Style Sheet

Now you build an external CSS file, reference it from within the Word .htm file
you just built, and use the !Important command to override the embedded
styles with your external styles in the CSS file.

Don’t be too disturbed if CSS terminology shifts around. For example, this
!Important command is called four different things by four different computer-
book authors I’ve read: Sometimes it’s a property, rule, value, or declaration.
The official W3 site (www.W3.org) is supposed to have the final word on mat-
ters like this, but even they are inconsistent. They refer to !Important as a
rule, but also describe ! and Important as keywords. Whatever. For years
now, whenever Microsoft cannot figure out a classification for a language

Figure 3-5:
Word allows

you to see
the results

of any
editing you

do in the
Script Editor
to the HTML

code by
clicking this

Refresh
toolbar.

59Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 59

element, they’ve called it a keyword. Some language elements are clearly func-
tions or operators and so on. Others are hard to categorize. In effect, keyword
has no real meaning — it’s just the grab bag where unclassifiable concepts are
tossed. For these kinds of terms, I prefer the word command. So I’m calling
!Important a command. And why not? Everyone has a different favorite
terminology.

To build a CSS, open Notepad and type the following style definitions:

p
{
color: blue;
text-align: center;
font-family: arial
!important;
}

Save this CSS as MyFirst.css.

Open the MyFirst.htm file in Notepad. You see something like the following
code at the very top of the .htm file. Insert a link to the .css file as shown here
in boldface:

<html xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:w=”urn:schemas-microsoft-com:office:word”
xmlns=”http://www.w3.org/TR/REC-html40”>
<head>
<meta http-equiv=Content-Type content=”text/html;

charset=windows-1252”>
<meta name=ProgId content=Word.Document>
<meta name=Generator content=”Microsoft Word 11”>
<meta name=Originator content=”Microsoft Word 11”>
<link rel=File-List
href=”Building%20your%20First%20Style%20Sheet_files/filelist.

xml”>
<link type=”text/css” rel=”stylesheet” href=”MyFirst.css”>
<title>Building your First Style Sheet</title>

Where in an .htm file you place your various elements is often not critical —
although of course you want some things in the header and some in the body.
Also, the order in which items are displayed or script code is executed can
be affected by their order in the code. However, putting similar elements
together if possible is usually best. For that reason, put your new link to the
.css file just below Microsoft’s link to its own .xml file.

The importance of !Important
Now save the MyFirst.htm file. Test the style sheet by double-clicking
MyFirst.htm to load it into Internet Explorer. You should see the results of

60 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 60

your !Important styles. In the paragraphs, the black text turns blue, is cen-
tered, and changes from the default serif font to Arial’s sans serif style, as you
see in Figure 3-6.

Try removing the !Important command from the .css file in Notepad. Press
Alt+F+S to save the change to this file. Then use Alt+Tab to switch to IE, and
then press F5 to refresh the browser (reloading the HTML to update what you
see to the latest version). As you see, blue and centering took effect, but the
serif Times New Roman font didn’t change to Arial as your external style
specified. Why did some of your CSS files’ styles get applied, but not others?
The answer is in the .htm code for this page. In the embedded styles, locate
the properties selector. You see this:

p
{mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
text-indent:12.25pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:”Times New Roman”;
mso-fareast-font-family:Times;}

Figure 3-6:
Your text

should
change
to blue,

centered,
and Arial
for each

paragraph
in the Web

page.

61Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 61

Microsoft’s embedded style does not define the color or alignment of <p>
selector, the selector that determines how paragraph elements look.
However, the font family is specified in the embedded style:

font-family:”Times New Roman”;

Notice the efficient way you can test CSS effects and modifications. Using
Notepad to hold the CSS file, you can make a change to the CSS code and
then save the file, simply refreshing the browser to see the results immedi-
ately. I mention this edit-test cycle more than once in this book because it’s
worth repeating.

The importance of being closest
Recall the “closeness” rule in cascading styles: An embedded style takes
precedence over an external style. The only way to override the embedded
Times New Roman font is to employ the !Important command.

Two other important points to remember about !Important. You must not
precede it with a semicolon and you must use it for every property (a “prop-
erty” in a CSS style has an effect on an “attribute” in the HTML code).

Omit semicolons
For example, this CSS style won’t work:

font-family: arial;!Important

That’s because you must not use the semicolon between the property’s value
(arial, here) and the !Important command. In order to work, your
!Important command should butt right up against the value, like this:

font-family: arial!Important

Everything must be important
Also, the following example turns the text blue, centers it (blue and centered
don’t conflict with other styles), and increases the size to 18 points because
of the !Important command — but fails to turn the font into Arial:

p
{
color: blue;
text-align: center;

62 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 62

font-family: arial;
font-size:18.0pt!Important
}

You have failed to add !Important to the font-family property. Each prop-
erty that you want to make !Important must have that command appended
to it, like this:

p
{
color: blue;
text-align: center;
font-family: arial!Important;
font-size:18.0pt!Important
}

Adding New Selectors
Now open your .css file and redefine the headline fonts from italic to normal,
from the default left-aligned to centered, and to a rather aggressive font
family named Ravie. First take a look at the embedded style that Word put
into the .htm file for the H1 selector:

h1
{mso-style-parent:””;
mso-style-next:Normal;
margin-top:14.0pt;
margin-right:0in;
margin-bottom:10.5pt;
margin-left:0in;
text-indent:0in;
line-height:24.0pt;
mso-line-height-rule:exactly;
mso-pagination:none;
page-break-after:avoid;
mso-outline-level:1;
font-size:17.0pt;
mso-bidi-font-size:10.0pt;
font-family:Georgia;
mso-fareast-font-family:”Times New Roman”;
letter-spacing:.5pt;
mso-font-kerning:0pt;
font-weight:bold;
mso-bidi-font-weight:normal;
font-style:italic;
mso-bidi-font-style:normal;}

Notice that the font is a typeface called Georgia and it’s italic. You have used
first- and second-level headlines in your .htm document, so rather than

63Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 63

create a separate selector for each, just group the headline styles into a
single style specification. Open your .css file in Notepad and add the selector
group shown in bold here:

p
{
color: blue;
text-align: center;
font-family: arial!Important;
font-size:18.0pt!Important
}
h1, h2
{
font-family: ravie!Important;
font-style: normal!Important
text-align: center;
}

Notice that you don’t need to add the !Important command to center the
headlines because the embedded Microsoft CSS selectors for headlines make
no mention of alignment. Therefore, your external style sheet has free reign
to make any changes to this attribute that you want.

When Cascades Collide
To see how the browser handles two external files when their styles compete,
use Notepad to create a second .css file with this paragraph selector definition:

p
{
color: maroon;
text-align: center;
font-family: arial!Important;
font-size:18.0pt!Important
}

Save this file as MySecond.css.

Now, link this second .css file to your MyFirst.htm file by adding the link in
boldface to the HTML code you’ve been working with in the previous
examples:

<link type=”text/css” rel=”stylesheet” href=”MyFirst.css”>
<link type=”text/css” rel=”stylesheet” href=”MySecond.css”>
<title>Building your First Style Sheet</title>

64 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 64

Save this file. Now imagine what will happen. In MyFirst.css, paragraph text is
supposed to be blue:

p
{
color: blue;
text-align: center;
font-family: arial!Important;
font-size:18.0pt!Important
}

But MySecond.css specifies that paragraph text be maroon:

p
{
color: maroon;
text-align: center;
font-family: arial!Important;
font-size:18.0pt!Important
}

What’s going to happen? Both of these selectors have the same “closeness”
(or specificity) to the HTML <p> tags in the .htm file because both are in
external files. Or do they have the same closeness after all? Does another
kind of closeness apply here as well? What do you suppose the color will be?

Load MyFirst.htm into IE to see which of these two external selectors domi-
nates. The text turns maroon. Why? Because the <link> for the second .css
file is closer to the affected <p> elements in the HTML code. The second .css
file link appears lower in the header, therefore closer to the body of the docu-
ment where the <p> elements reside. If you switch the order of the <link>
elements in the header, the text turns blue. Try switching the order like this
and then saving the .htm file and refreshing the browser:

<link type=”text/css” rel=”stylesheet” href=”MySecond.css”>
<link type=”text/css” rel=”stylesheet” href=”MyFirst.css”>

What is the result? Blue.

65Chapter 3: Up and Running with Selectors

07_584251 ch03.qxd 2/10/05 11:24 PM Page 65

66 Part I: The ABCs of CSS

07_584251 ch03.qxd 2/10/05 11:24 PM Page 66

Part II
Looking Good

with CSS

08_584251 pt02.qxd 2/10/05 11:20 PM Page 67

In this part . . .

CSS offers you many efficiencies, including the ability
to lay out Web pages your way, adjust the space

between characters, words, and lines of text, and add
color or texture to bring your backgrounds alive. These
and other elements of fundamental CSS design are cov-
ered in this Part.

08_584251 pt02.qxd 2/10/05 11:20 PM Page 68

Chapter 4

Taking a Position
In This Chapter
� Making it all relative

� Getting comfy with absolute placement

� Offsetting positions

� Stacking elements and adjusting opacity

Perhaps the single most fundamental element of design is positioning. Say
someone hands you five objects and tells you to arrange them inside a

frame. The texture, color, or shape of those five objects doesn’t much matter.
If you’re talented, you can make them look good inside the frame by arranging
them in the best way.

Positioning elements on a Web page is likewise crucial to the success of
that page. You don’t want people to think that the elements just fell there —
accidentally located wherever they happened to land.

Several chapters in this book deal with positioning, but here you can get an
introduction to the basics of controlling Web page design.

A simple Web page by default arranges its elements from top to bottom, piling
them one on top of another, against the left side of the page. Here are two
paragraphs, with a picture in between them:

<html>
<head>
</head>
<body>
<h1>This Is The Headline</h1>

<P>

</P>

<P>This is paragraph two.</P>
</body>
</html>

09_584251 ch04.qxd 2/10/05 11:21 PM Page 69

Try saving this file as Simple.htm. Also, in the same folder, add a picture
named lake.jpg. Then double-click Simple.htm to view it in Internet Explorer.
You should see something like Figure 4-1.

Improving the design shown in Figure 4-1 is easy enough: Just add an
attribute that centers the headline:

<h1 align=”center”>This Is The Headline</h1>

This results in the more pleasing design shown in Figure 4-2.

But there’s a problem with centering text this way. It’s centered relative to
the browser, not to the graphic. So, if the user’s browser is any wider than
the graphic itself, the centered text moves off center relative to the image,
as shown in Figure 4-3.

HTML wasn’t designed to deal effectively with laying out a page. CSS was
developed, in part, to solve this problem. CSS contains a variety of position-
ing tools, including sophisticated relative positioning. You can make the loca-
tion of one object related (tied to, or relative to) another object. This solves
the problem of the user resizing the browser window: Relatively positioned
objects retain their relationship to each other no matter what happens to the
browser itself.

Figure 4-1:
The simplest

Web page
design
merely

stacks text,
pictures,

and other
elements on
top of each
other, along
the left side
of the page.

70 Part II: Looking Good with CSS

09_584251 ch04.qxd 2/10/05 11:21 PM Page 70

Figure 4-3:
Whoops.

Simple
centering

doesn’t tie
the text to

the graphic
— so

different
browser

widths
result in
different

positioning.

Figure 4-2:
Centering

the headline
adds variety
to this page
and visually

connects
the headline

to the
graphic.

71Chapter 4: Taking a Position

09_584251 ch04.qxd 2/10/05 11:21 PM Page 71

Relativity Explained
Relative positioning means that an element is located in terms of another
element.

Relative location might mean an element is centered in the middle of the other
element, or 35 pixels to its left, or 25 percent down from its top. The main point
is that the first element’s position depends on the other element’s location. As
you saw in Figure 4-3, a headline can be centered relative to the browser window.

Absolute positioning specifies a particular number (pixels, points, inches,
whatever measurement system you choose) by which the element should be
positioned. Absolute size is described by width and height numbers, as in the
picture size described in the HTML code earlier in this chapter:

Absolute position is described by two numbers: the top and left. Technically
called coordinates, these two numbers tell the browser exactly where to put
the element within the browser’s window. Top 3 inches means put the top
of the element three inches down from the browser window frame. Left 2
inches means two inches over from the left side of the frame. Using these
two coordinates, you can put anything, anywhere.

Some designers try to make their Web pages extremely flexible so that they
can be viewed in many different sizes — from tiny PDA screens to gigantic
stadium screens. This is another reason to use relative size and position tech-
niques. Notice that when you choose View➪Text Size in Internet Explorer,
you are shown relativistic options: largest, larger, medium, smaller, smallest.
You don’t see choices like 1 inch, 1/2 inch, 1/4 inch, and so on, which are
absolute specs. The people who designed Internet Explorer assumed that
people are using different-size screens with different resolutions settings
(800x600 and others). So the meaning of “large” should be relative to the res-
olution, not some fixed (absolute) unit of measurement. What’s largest on a
PDA is quite a different size from what’s largest on a Jumbotron, right?

Of course, as Albert Einstein pointed out, everything is relative except the
speed of light. So, when we speak of “absolute” positioning, it merely means
that we’re being somewhat “less relative.” What do I mean by this?

You actually cannot sit still, no matter how hard you try. When you think you’re
sitting still, you’re still moving at about a half million miles per hour as the solar
system spins around the galaxy. In fact, you’re moving through space in a rapid
and complex corkscrew path. Even while you’re quietly asleep, you’re still flying
aboard the rotating earth, orbiting the sun, spinning around the galaxy. And the
galaxy itself is hurtling through the universe. So you’re moving really fast in a
dozen different circles all the time. Luckily, so is your bed and everything else
in your room. They’re all at rest, relative to you, but not relative to light.

72 Part II: Looking Good with CSS

09_584251 ch04.qxd 2/10/05 11:21 PM Page 72

The same concept applies to absolute positioning. After all, an inch on a PDA
screen is quite a different thing from on a giant projection TV set. So, even
though an inch is an absolute measurement, its effect is relative to the device
that displays your Web page. So don’t be disturbed by the somewhat slippery
concept of absolute in CSS styles.

Flow Versus Positioning, Floating
Versus Coordinates

If you simply add elements to a Web page — without specifying specific coor-
dinates — they flow (stack themselves against the left side, as illustrated in
Figure 4-1).

CSS provides two important positioning tools: floating and positioning. Getting
your mind around the various interactive features of these tools takes some
time, but you’ll be glad that you invested that time. For one thing, you can
often achieve a great goal that CSS makes possible: ridding your Web pages of
tables used for layout.

Chapters 9, 10, and 11 go into CSS positioning features in depth, but getting a
sense of what all the excitement’s about is a good idea — it gives you a little
taste of what you can do.

With CSS positioning, you can specify precisely where elements show up on
the browser. But note that this specification is relative to their default position
or relative to other elements, the browser background. (Of course, when you
position something in terms of the browser background, you can consider it
“absolute” positioning. The browser frame is a Web page’s “universe,” so you
can ignore the fact that a user might move or resize the browser window. An
element positioned one inch from the left side of a browser window stays at
that coordinate through anything the user might do.)

Now look at the various ways you can use to modify the position property in
a CSS selector: static, relative, absolute, fixed, and inherit.

Static is similar to the default — what happens when you don’t specify any
position value. Static elements flow in the default way (they stack on the left
side), but they cannot be repositioned; they remain where they are and you
cannot give them coordinates (top and left properties). Nor can you adjust
a static element’s position using script, such as VBScript or JavaScript. They
remain where they are: static.

Relative positioning is like static, but you can use top and left properties to
modify the default flow location, relative to other objects.

73Chapter 4: Taking a Position

09_584251 ch04.qxd 2/10/05 11:21 PM Page 73

Absolute positioning detaches the element from other objects — its position is
not relative to them. It’s independent. It is located in the browser window some
specified distance over from the left side and down from the top. You provide
the top and left properties, starting with top: 0px; left: 0px, which
would butt the element up against the top left corner of the browser window.
(Technically, the top and left properties describe an element’s location within
its containing block — but I leave that concept for a later discussion.)

To see how absolute positioning affects an image, try this example:

<html>
<head>
<style>
.absol {position: absolute; top: 0px; left: 0px;}
</style>
</head>
<body>
<h1>This Is The Headline</h1>
<p>
This is a paragraph of text.
</p>
<p>This is paragraph two.</p>

</body>
</html>

This example illustrates how positioning the graphic at 0,0 (absolute) causes
it to partially cover a headline and completely cover a paragraph of body
text. The headline and text are flowing (stacking in order of their appearance
on the HTML document). The image, however, is third in the stacking order,
yet positioned first: It’s absolutely displayed up against the top left, as shown
in Figure 4-4:

Figure 4-4:
Mixing

flowed with
absolute
elements

can cause
one to cover
another, like
this graphic
that covers
a headline.

74 Part II: Looking Good with CSS

09_584251 ch04.qxd 2/10/05 11:21 PM Page 74

What if you change the position property from absolute to relative? Take a
look at this:

<style>
.absol {position: relative; top: 0px; left: 0px;}
</style>

Changing the position value from absolute to relative causes default behav-
ior. The graphic is positioned where it would normally flow — in the stacking
order of the elements based on their order in the HTML code, as shown in
Figure 4-5:

Elements with a fixed value for the position property remain in their location
in the browser, even if the user scrolls the browser. The other elements that
are not fixed scroll, but the fixed element does not. This trick can be used to
make a running headline, to frame, or to preserve a header or a set of labels
at the top of a table. However, using fixed has two drawbacks. It can look
annoying when the user scrolls — the item can jitter and bounce as it resists
scrolling — and, more importantly, this technique doesn’t work in IE. If some-
thing doesn’t work in 96 percent of the browsers in use today, what’s the
point? Just avoid it.

Figure 4-5:
Change

absolute to
relative and
the default
flow order

of the
elements —

with the
graphic at

the bottom
— is

restored.

75Chapter 4: Taking a Position

09_584251 ch04.qxd 2/10/05 11:21 PM Page 75

Controlling Layout with Offsetting
In the previous examples in this chapter, you’ve used top and left proper-
ties to describe absolute locations. Now, take a further look at offsetting one
element relative to another.

Top and left are specific locations in relation to an enclosing object. For
example, if your element is not enclosed within another element, the top
and left are specified in relation to the browser window (or “viewport”).

The World Wide Web Consortium (W3C) is quite vague and sometimes con-
tradictory about some of its terminology. A central problem — aside from
traditional academic fondness for airy theory — is that the W3C wants to
avoid using the specific, concrete, understandable term browser. Instead,
they prefer the abstraction of the term viewport — a device-independent
notion. Given that HTML and its offspring are supposed to be usable on cell
phones and large monitors, the idea is that the term viewport more accu-
rately expresses the potential variety of output devices. Given that 99 per-
cent of your CSS efforts will end up in a browser, I suggest that you politely
ignore the platform-independence abstractions. It’s just confusing. So, like
most authors of books on CSS, I’ll just ignore the viewport problem and use
the terms browser window and viewport interchangeably.

Sometimes elements are positioned within other elements (such as a para-
graph <p> inside a block <div>). In that case, specifying top and left are in
relation to the container element — the <div> that surrounds the <p>, for
example.

Visualize documents as made up of blocks nested inside other blocks. A simple
document with just a series of paragraph (<p>) elements can be viewed as a
<body> element containing the <p> elements. Here’s the official terminology:
The body is the containing block of these paragraphs.

Notice that the blocks-within-blocks visual description parallels the idea of a
“tree-structure” within an XML or even an HTML document. Parent/child is
another way to describe this hierarchical concept.

Enough theory. Take a look at an example of positioning:

<html>
<head>
<style>
div.sidebar {position: absolute; background-color:

cornflowerblue; top: 0; left: 0; width: 100px;

76 Part II: Looking Good with CSS

09_584251 ch04.qxd 2/10/05 11:21 PM Page 76

height: 75%; padding-left: 6px; padding-right: 4px; padding-
top: 6px; font-size: 16pt;}

div.maintext {position: absolute; background-color:
darkkhaki; top: 0; left: 110px; height: 75%;

width: 75%;}
img.relative {position: relative; left = 35%; top = 20%}
</style>
</head>
<body>
<div class=”sidebar”> HERE is a sidebar. You can fill it with

links, text, whatever... </div>
<div class=”maintext”>
<IMG class=”relative” height=”100” width=”175”

src=”town.jpg”>
</div>
</body>
</html>

This code results in the window shown in Figure 4-6.

In the header, you define three rules: sidebar, maintext, and relative. The
first style provides information about how a sidebar class of the <div> ele-
ment should look:

div.sidebar {position: absolute; background-color:
cornflowerblue; top: 0; left: 0; width: 100px;

Figure 4-6:
A variety

of CSS
positioning
techniques

are
illustrated in

this figure.

77Chapter 4: Taking a Position

09_584251 ch04.qxd 2/10/05 11:21 PM Page 77

height: 75%; padding-left: 6px; padding-right: 4px; padding-
top: 6px; font-size: 16pt;}

This rule specifies that a <div> should be absolutely positioned within the
browser window at the upper-left corner (0 top offset and 0 left). As we
say in North Carolina, that thing is slap in the corner — it couldn’t get any
further up or over to the left. It is specified as 100 pixels wide, but notice that
the height is not an absolute value. It is expressed as a percentage of the con-
taining block (in this case, the containing block is the browser). As you can
see in Figure 4-6, the sidebar div on the left side is 75 percent the height of
the browser window.

This is an important point: Remember that you can express both size and
position as relative percentages, even though they are within a style where
the position property has been defined as absolute.

Try running this example and then resizing the browser window to make it
longer. Notice that the browser maintains the 75 percent height ratio between
the div and the browser window.

The sidebar class also specifies some padding on the left, right, and top. This
is a useful way to keep text or other elements from looking awkward by butting
right up against the edges of a div or other block. Without that padding, notice
how crude the text looks against the background, in Figure 4-7.

Figure 4-7:
Without

padding,
text looks

crude as it
butts up

against the
sides of a

background
block.

78 Part II: Looking Good with CSS

09_584251 ch04.qxd 2/10/05 11:21 PM Page 78

Moving Deeper into Positioning
In this section, I explore some further refinements of CSS positioning. CSS has
lots of ways to assist you in achieving the precise layout you’re aiming for in
your Web pages.

In the preceding sample of code, the background color is described as corn-
flowerblue. Obviously this is a more readable, understandable, and memo-
rable way of expressing this color than the bizarre RGB equivalent (#6495ED).
Browsers other than IE 6 can have problems using descriptive words for
colors. So if you’re worried about your page looking bad on other browsers,
use #6495ED instead of cornflowerblue. All browsers can translate #6495ED,
even if we humans can’t.

But my advice is to just assume that pretty much everyone who’ll see your
Web page uses IE. Why? Because most everyone does use IE.

I’ve included the IE color list in this book’s Cheat Sheet, which is located
inside the front cover. Or you can see the complete color table, with both
descriptive and RGB values, at http://msdn.microsoft.com/library/
default.asp?url=/workshop/author/dhtml/reference/properties/
background_0.asp. Or, if Microsoft has moved the table to a different URL
(not that Microsoft would ever shift one of their site’s addresses around!),
try searching the MSDN site for color table.

Remember the three styles defined in the header of the preceding sample of
code? The second style you defined is for the main section in the Web page,
called maintext:

div.maintext {position: absolute; background-color:
darkkhaki; top: 0; left: 110px; height: 75%;width:
75%;}

This is similar to the sidebar class, but uses a different color, and offsets the
div 110 pixels from the left side of the browser window. This is an absolute
offset and does not change if the user stretches the browser window to make
it wider. Notice the relationship between 110 pixels (defined as the left side
of the main section here) and the previous sidebar style, which specified
that the sidebar div is 100 pixels wide. This way, these two divs fit together
nicely, with a little 10-pixel-wide stripe. How would you get rid of the stripe?
Make the maintext class left property 100 pixels, or expand the size of the
sidebar to 110 pixels.

79Chapter 4: Taking a Position

09_584251 ch04.qxd 2/10/05 11:21 PM Page 79

What would happen if you left the maintext class at 110 pixels left, but
expanded the size of the sidebar class to, say, 130 pixels? Every group always
has a joker who wants to see what happens if he violates spaces. Go ahead
and try it. The division called maintext (which comes after the sidebar in
the HTML) covers up part of the sidebar and part of the sidebar’s text. You
can create cool effects by manipulating overlapping blocks and adjusting
their opacity (so you could still see the text in the sidebar), but I get to those
tricks later.

Notice that with the maintext class, you defined both its height and width
as relative. Both the width and height are 75 percent, but the width is com-
promised if the user adjusts the width of the browser window because the
browser has to make allowances for displaying the sidebar with its absolute
width.

The third style defined in the header of the preceding code specifies an image
with an entirely relative location within its containing block. Unlike the div
elements, which are contained by the browser itself, the image is contained
within a div. So the position of 35 percent left means that the left side of the
photo is positioned at about one-third of the width of the maintext div, and
at 20 percent, or about one-fifth, down from the top of the div. You can see
these offsets in Figure 4-6.

img.relative {position: relative; left = 35%; top = 20%}

80 Part II: Looking Good with CSS

CSS units of measurement
You can specify top, left, height or width with the
following units:

� px: pixels, the smallest unit on a display —
the dots of colored light that you can some-
times see if you get close enough to a TV

� pt: points, 1/72 inch. Normally this is a type-
face measurement

� pc: picas, 1 pica = 12 points

� mm: millimeters

� cm: centimeters

� in: inches

� em: A measurement of the approximate font
size of the current element

� ex: the x-height (the height of a lower-
case x) of the font of the current element —
usually about 1/2 the size of em

For relative size or position, use % for percent.
Units of measurement are covered in detail in
Chapter 6.

09_584251 ch04.qxd 2/10/05 11:21 PM Page 80

If you try stretching the browser wider or longer, the photo moves to main-
tain its one-third from the left, one-fifth from the top position within its
container div.

Finally, in the body of the document, you display your elements:

<div class=”sidebar”> HERE is a sidebar. You can fill it with
links, text, whatever... </div>

<div class=”maintext”>
<IMG class=”relative” height=”100” width=”175”

src=”town.jpg”>

Notice that the image specifies the size that you want the photo to be in
absolute terms (pixels are the default unit of measurement, used if you don’t
specify any other unit). If you don’t specify height and width, the image
appears at its true size.

Stacking Elements on Top of
Each Other with the Z-Axis

Clearly, there’s more to positioning than mere horizontal (left) or vertical (top)
coordinates. Indeed, there’s a third axis, known as the z-axis. It’s what happens
when something in a browser overlaps another object, or is “on top of it” in the
sense that laying a book on a table puts that book on top of the table.

In CSS, you specify which object is on top of another by using the z-index
property. A higher z-index value causes an object to appear on top. For exam-
ple, recall the experiment earlier in this chapter when you had the maintext
class at 110 pixels left, but expanded the size of the sidebar class to 130
pixels? The maintext covered up part of the sidebar. You can change this
by adjusting the sidebar’s z-index to 99 or some number that you know is
higher than the maintext. This will move the sidebar div on top of the
maintext div.

div.sidebar {position: absolute; z-index: 99; background-
color: cornflowerblue; top: 0; left: 0;width:
130px; height: 65%; padding-left: 6px; padding-
right: 4px; padding-top: 6px; font-size: 16pt;}

(Note that I also reduced the height of the sidebar from 75 percent to 65 per-
cent so that the overlapping would show up better in Figure 4-8.)

When you add a high z-index value, the sidebar moves on top of the main
text div, as shown in Figure 4-8:

81Chapter 4: Taking a Position

09_584251 ch04.qxd 2/10/05 11:21 PM Page 81

Combining Stacking with Translucence
Now try a cool trick that combines stacking with opacity adjustments. It’s
useful for all kinds of design effects and is particularly dramatic when used
with scripting that animates the opacity or positioning of the elements
dynamically. This kind of animation can be quite compelling when used cor-
rectly. This example adjusts the sample code you’ve been using throughout
this chapter, but causes the sidebar element to show through the maintext
element.

CSS3 is working to incorporate an opacity property in some future spec, but
why wait? IE 5.5 and later supports an opacity feature you can use right now.
How about some stacking, combined with blending of elements? Take a look
at Figure 4-9.

In Figure 4-9, the sidebar is defined as having a lower z-index than the
maintext div. The sidebar has a z-index of 1 and the maintext has a z-
index of 2; therefore, the maintext is superimposed on top of the sidebar.
However, the sidebar shows through because the maintext is made some-
what transparent by giving it an opacity value of 60. (An opacity value of 0
makes an element fully transparent; a value of 100 makes it fully opaque.)

filter:progid:DXImageTransform.Microsoft.Alpha(opacity=60)

Figure 4-8:
This sidebar
is positioned

“on top” of
the

maintext
div, thanks
to a high z-

index value.

82 Part II: Looking Good with CSS

09_584251 ch04.qxd 2/10/05 11:21 PM Page 82

Here’s the complete code that produces Figure 4-9. Note: This code assumes
that you have a graphic file with a sandstone texture (called sandstone.jpg)
in the same folder on your hard drive as the .htm file. If you don’t, substitute
another texture in a graphics file for the background, but name it
sandstone.jpg so that the following code will work.

<html>
<head>
<style>

div.sidebar {position: absolute; z-index: 1; background-
color: cornflowerblue; top: 20; left: 30; width:
150px; height: 35%; padding-left: 6px; padding-
right: 4px; padding-top: 6px; font-size: 16pt;}

div.maintext {position: absolute; z-index: 2;
filter:progid:DXImageTransform.Microsoft.Alpha(opa
city=60); background-color: darkkhaki; top:
55;left: 100px; height: 75%; width: 75%;}

</style>

</head>
<body background=”sandstone.jpg”>

Figure 4-9:
Combine

positioning,
z-index, and

opacity to
create many
cool effects.

83Chapter 4: Taking a Position

09_584251 ch04.qxd 2/10/05 11:21 PM Page 83

<div class=”sidebar”> Take a look at this sidebar! Manipulate
z-index, opacity and position and you can get some
great effects.</div>

<div class=”maintext”>

</div>
</body>
</html>

Imagine the nice fade-in effect that you can generate if you add some script-
ing to slowly adjust the opacity value while the user is watching. You’ve prob-
ably seen cool effects like fades on some of the better-designed Web sites. By
the time you finish this book, you’ll know how to create animation with CSS
and scripting. But if you’re the impatient type who wants to get to it right
away, flip over to Chapter 16 now.

If you are concerned about browser-independent code, other browsers than
IE also support opacity through proprietary properties. This code enables
this trick to work in IE, Mozilla, Safari, and Opera:

div.maintext {position: absolute; z-index: 2; background-
color: darkkhaki; top: 55;left: 100px; height:
75%; width: 75%;

opacity: 0.6; /*supported by current Mozilla, Safari, and
Opera*/-moz-opacity: 0.6; /*older Mozilla*/

-khtml-opacity: 0.6; /*older Safari*/
filter: alpha(opacity=60); /*older IE*/
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=60)}

84 Part II: Looking Good with CSS

09_584251 ch04.qxd 2/10/05 11:21 PM Page 84

Chapter 5

All About Text
In This Chapter
� Thinking about user interfaces

� Handling fonts in CSS

� Managing size

� Using special text effects

CSS offers you many ways to style text. If you make wise choices, your
overall page design is appealing to your site’s visitors. On the other

hand, an otherwise elegant, powerful Web page can be ruined if you don’t
give thought to how text integrates with the graphic effects. This chapter
is devoted to CSS text styling.

Thinking About User Interfaces
The user views your Web site as both a graphic and a body of text. As a
designer, you are responsible for avoiding obvious problems such as back-
ground graphics dark enough to make foreground text unreadable, jumpy
animation, distracting colors, poor general design, and so on.

But you’re also responsible for choosing text characteristics that are both
pleasing and that reflect the image you want to project.

Obviously, a bank site wants to project solidity and conservatism, so the
classic Times Roman font is a better choice than the Joker font, shown in
Figure 5-1.

Even after you’ve selected a typeface, you must consider other issues as well
when designing your CSS text styles: font size, bold or italic, centered, justi-
fied, superscript, initial caps, or underlined.

10_584251 ch05.qxd 2/10/05 11:23 PM Page 85

Substituting Fonts
A font is a particular design of the letters of the alphabet, digits, and associ-
ated symbols and punctuation marks. Two different fonts are displayed in
Figure 5-1, and it’s easy to see how many different ways you can distort the
characters of the alphabet and still leave them recognizable.

Many authors of books on CSS fret that people using various operating sys-
tems might not have specific fonts. So, for example, a designer might specify
the popular Times New Roman font, but a browser running on Linux might
substitute a similar font (perhaps Times Roman, or Garamond) rather than
the Times New Roman they specified.

But so what? First, font families share enough characteristics that it isn’t that
crucial. What’s more, the great majority of Web users use Windows, which
ships with a standard set of fonts, including Times New Roman. The viewer
is likely to get exactly what the designer specifies 96 percent of the time.

When memory and hard drive space was scarce in computers, people some-
times deleted fonts to conserve space. No longer. You can count on nearly all
users having the full Microsoft set that came with the operating system.
Nobody bothers to delete these fonts any more.

My computer has 295 fonts, and I’ve not added nor subtracted any since
Windows XP was installed. However, some of these aren’t actually separate
fonts — instead they’re variants such as Times New Roman Bold, Times New
Roman Bold Italic, and so on. On your computer, you’ll find fonts for every
occasion, and some fonts that are not good for any occasion except perhaps
scaring away users through sheer bad taste.

Figure 5-1:
Choose

fonts that
reflect the

image
you’re trying

to project.
The Joker

typeface
isn’t

reassuring
to bank

customers.

86 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 86

Font families are, not surprisingly, specified in CSS rules using the font-
family property. If you want all paragraphs in your document to use the
Arial typeface, you create the rule like this:

p {font-family: arial;}

Some font names have a space in them, such as Times New Roman or
Showcard Gothic. In those cases (and also if the name includes any symbols
such as % or @), you should enclose the name in single quotes, like this:

p {font-family: ‘Showcard Gothic’, arial;}

Types of Type
Fonts fall into two primary categories, based on whether or not they have
curlicues and varied line widths. Take a look at Figure 5-2, which illustrates
the sans serif style of fonts — the plainer style with fixed line widths and
plain line ends.

Now consider Figure 5-3, the serif style, that looks a bit more like handwriting
because, like characters drawn with a pen, the line widths vary and the ends
of the lines taper off to a point or a blob:

The distinction between serif and sans serif is quite stark in the letter I. As
you can see by comparing Figures 5-2 and 5-3, the sans serif version is like a
simple brick. The serif version is more like a roman column, flared at the top
and bottom and tapered.

Uniformly thick lines No fancy
curls on the
ends of lines

Figure 5-2:
Sans serif
fonts, like

Arial, have
lines that

don’t vary in
width, and

the ends of
lines don’t

flare — they
stop

abruptly.

87Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 87

Eagle-eyed readers may notice that in Figure 5-2, a few of the lines do vary a
little bit in thickness, and some are a tiny bit flared at the end (notice the Q).
However, the standard division between sans serif and serif nonetheless
overwhelmingly prevails. Over the centuries, various typeface designers have
fiddled a little with sans serif fonts to make them ever so slightly less rigid.
Likewise, during most of the twentieth century, serif fonts have generally
tended to evolve into designs slightly less decorative (or shall we say less
ornate) in obedience to the modern preference for simplicity, straight lines,
and boxy shapes. You’ve doubtless heard the famous dictum, “Less is more.”
Today’s architects and painters seem to be emerging from the minimalist aes-
thetic that has ruled for the past five decades, but only time will tell. For now,
less is still considered more in most creative fields.

Serif fonts have traditionally been used more for body text, where they are
thought to improve readability because the letters have more visual variety.
This diversity and the small strokes and flourishes at the ends give letters
more individuality than the cleaner but more uniform sans serif styles.

You can think of serif italic fonts as an amplification of the qualities associ-
ated with serif, plus they are tilted to the right.

Sans serif fonts and all-caps have traditionally been used more often than
serif fonts in headlines because headlines are brief and relatively large, and
readability is less of an issue with large text. These traditional design rules,
however, are now widely ignored.

One exception to the greater legibility of sans serif faces happens at extremely
small sizes. When squeezed into “mousetype,” serifs start to obscure readabil-
ity and the cleaner lines of a sans serif face are actually an advantage. If you
don’t want people to read the fine print in a contract, be sure to put it in a serif
font. Here’s an example of small typefaces you can load into your browser to
see the difference:

<html>
<head>

<style>

serif
TIMES ROMAN Q

Lines vary in
thickness

Lines taper to an end

Figure 5-3:
Serif fonts

have
curlicues at
the tips and

their line
weights

vary.

88 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 88

p {font-size: 7pt;}
p.arial {font-family: arial;}

</style>
</head>

<body>

<p>
It’s a bit difficult to read text at small font sizes, which

is an advantage if -- for strictly legal reasons -
- you don’t want someone to see the small print in
your document.

</p>

<p class = “arial”>
It’s a bit difficult to read text at small font sizes, which

is an advantage if -- for strictly legal

reasons -- you don’t want someone to see the small print in
your document.

</p>

</body>
</html>

One particularly interesting font design is called Optima, which attempts to
combine the qualities of serif and sans serif. It is classically proportioned but
avoids serifs. It’s actually quite a beautiful font.

Optima permits itself some slight serifs (see the lowercase a) and also a little
variation in line widths. So, if you want to combine sans and serif, consider a
font like Optima.

Figure 5-4:
Optima (or

as Microsoft
calls it,

Optimum) is
a hybrid font

combining
qualities of

both sans
and serif

fonts.

89Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 89

Font names vary, but you can usually figure out synonymous fonts because
the alias names often closely resemble the official name, as in the classic
Palatino and the alias Palomino. If you’re unsure how closely two typefaces
match, look closely at the uppercase Q and the ampersand (&). These are
usually among the most distinctive characters in the typeface alphabet.

Fonts progress from the austere to the ornamental, with sans serif fonts at
the austere end of this spectrum, and then progressing to serif, italic serif,
and various “cursive” fonts (they imitate handwriting and are best left to
wedding invitations and French restaurant menus). At the far end of the spec-
trum you have the exotic fonts (also called ornamental or fantasy fonts). Alas,
they are almost never useful. Exotic fonts feature adorned letters (see Figure
5-1 and 5-5). They appeal to very few people over the age of 17, so try to
avoid them in most Web page designs. Because most of them are difficult to
read, limit their use, if any, to headlines rather than body text.

Perhaps if you’re designing a Halloween Web site, or an invitation to a costume
ball, you might want to resort to some of the exotic fonts illustrated in Figure
5-5, but for most purposes, they’re simply grotesque and to be avoided. For
example, the Gigi font might be good for a French-related site, the Magneto for
50s retro designs, Weltron for radiation warnings, and Chiller for horror movie
ads. You can visualize using some exotic fonts in specialized contexts; they’re
attractive in their way. But Baby Kruffy, Jokewood — where, on what kind of
Web page, could they ever be charming?

Avoiding monospace
I’m also not spending much time on monospace fonts. These fonts — Courier
is the most famous — were used frequently until a generation ago. They were

Figure 5-5:
Most of

these fonts
should be

avoided, as
a way of

preserving
your

reputation
for good

judgment.

90 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 90

used not because they looked good, or were easy to read, but because they
solved a technological problem. Monospaced font allot the same width to
each character, even when it’s senseless to do so. In other words, the i is as
wide as the w. So you have a wad of white space on either side of the i, and
other letters have varying amounts of too much or too little room between
them.

Why then was monospace so widely used? Most typewriters could not
manage proportional (varying) character widths, and some display devices
had a similar problem. These issues died along with the typewriter. Computer
output devices — printers and monitors — can quite easily handle variations
in character width. So just ignore monospaced character fonts. Their day is
done, with a single exception: Monospaced fonts like this are sometimes
used in books and browsers to indicate computer language code. Try the
<code> tag in HTML to see it.

Using system styles
Windows offers a variety of typefaces for its various components. If you want
to use elements in your Web pages that look like the Windows fonts (or some
other operating system that’s hosting the browser), you can use system fonts.
The available fonts are caption, icon, menu, message-box, small-caption (for
captions on tiny components), and status-bar. Here’s an example you can load
into Internet Explorer to see these font effects:

<html>
<head>

<style>

button {font: caption;}
icon {font: icon;}
menu {font: menu;}

</style>
</head>
<body>

<button>
This is a caption on a button
</button>

<icon>
ICON FONT

91Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 91

</icon>

<menu>
menu font
</menu>

</body>
</html>

If you’re planning to extensively mimic the OS look and feel in your Web
pages, however, you might want to consider using backgrounds created in
graphics applications and other special techniques described in Chapter 7.

All Roads Lead to Rome
For most body text, especially for serious, formal Web pages (for example,
Web sites that are corporate or religious or wherever sobriety and dignity are
expected), a Roman font is ideal. All serif typefaces derive from a classic, ele-
gant alphabet designed by an unknown Roman calligraphic genius in the first
century AD.

His work quickly spread throughout the civilized world — appearing on
everything from public architecture to coins. This seminal typeface consisted
originally only of capital letters. It was so thoughtfully designed — close to
perfection really — that it continues to dominate Western text, and it proba-
bly always will.

Originally carved into marble on temples and statues, the typeface now
known as Roman proved equally suitable to ink on paper.

Simplicity above all
The other major event in typeface design took place in 1816, and this time we
know who to thank. William Caslon IV, scion of a family of famous typeface
designers, lopped off the serifs and enforced a single line width for his new
typefaces. This represented a return to the long-ignored Greek alphabet of
500 BC, and it anticipated the “Less is more” aesthetic. Now called sans serif
(sans is French for “without”), this typeface dominates headlines, captions,
pull-quotes, or any text located apart from, or larger than, body text. Take a
look at several popular sans faces in Figure 5-6:

92 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 92

For comparison, here are some famous serif faces, in Figure 5-7:

As you can see in Figure 5-7, different Roman typefaces have detectable dif-
ferences in their look and feel. Palatino and Calisto are heavier, so they’ll
darken a page that has lots of text. Goudy is light, but some consider it and
Caslon (also known as Calisto) too “fussy” and old-fashioned.

Figure 5-7:
These serif

typefaces
are all good
choices for

body text.

Figure 5-6:
Without

serifs,
letters are
sparer but
harder to

read in body
text.

93Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 93

However, if you’ve got lots of text and little “white space” (blank areas) on a
page, consider Goudy or some other relatively weightless typeface to see if
you can lighten things up a bit. Garamond is perhaps the oldest typeface that
remains extremely popular. It will likely be around as long as people use
Western alphabets. It’s an excellent all-purpose choice for body text. Times
Roman (of various varieties) is also a safe choice for body text. Times New
Roman is the default font displayed in Internet Explorer unless an HTML font
element, or a CSS rule, specifies otherwise. The user can also change the
default font in IE by choosing Tools➪Internet Options, and then clicking the
Fonts button in the Internet Options dialog box that appears.

When you’re not too picky about typeface
If you’re not that concerned about which particular typeface is used, you can
specify generic sans or serif (use sans-serif or sans), like this CSS style that
enables the user’s browser to pick a serif font — probably Times New Roman:

body {font-family: serif;}

Also, because the <body> element is parent to paragraphs <p> and other chil-
dren, those children inherit this serif font too (unless a more specific selector
insists on another style).

You can combine a specific font request with a generic fallback position. If
Garamond isn’t available on the user’s machine, the user’s default serif font is
used in response to the following rule:

body {font-family: Garamond, serif;}

Using Font Variants
When should you use italic, bold, underlining, and other typeface variations?
Most typefaces have several variants, with boldface and italic the most
common. Boldface is most often used in headlines. It’s big and thick. It’s
rarely used in body text because it’s too distracting. Like an all-uppercase
font, body text bold can be too much of a good thing.

If you want to emphasize something in body text, use italics, not all-caps or
bold or any other trick. Just italics. (Young people tend to emphasize body text
in all kinds of ways. In addition to c and ALL CAPS, they reverse the type
(white-on-black),underline, draw hearts, add rows of exclamation points!!!!!,
and so on. These tactics do add emphasis of a sort, but like someone who
thinks that shouting makes their argument stronger, these techniques are not

94 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 94

all that convincing and quickly become tiresome. Just use italics in body text
when you want to add emphasis.

One special exception: Sprinkle boldface in body text if you want to give the
reader a way to quickly scan some text. The bold words act like mini-head-
lines embedded within the text. The classic example of this technique is the
gossip column where the names of the celebrities are bold. You can use this
approach in corporate reports, travel advertisements, or anywhere else
where you aren’t using subheads, yet you want to give the reader an efficient
way to skim through the text and locate topics of interest.

Although their use in body text should be limited, boldface, all-caps, and
underlining are often useful in headlines and can add necessary variety to
your page designs.

Specifying Font Weight
When you want to adjust the weight (the darkness, boldness, or lightness),
you can resort to these relative CSS values: normal, bold, bolder, lighter,
100, 200, 300, 400, 500, 600, 700, 800, 900, inherit. The higher the number,
the bolder the font weight. Most often, simply use the bold value:

H2 {font-weight: bold;}

The values from 100 to 900 are merely indications of the desired weight, but
few user typefaces have this many weights. Although this scheme has no
absolutes, you can think of weights 100-300 as roughly equivalent to “light”
faces, such as Copperplate Gothic Light, 400-500 as regular (the CSS value
normal), and 600-900 as bold. However, if a typeface has weight distinctions
such as bold, ultrabold, and so on, the numeric weight values add more
specificity.

You can use the values lighter or bolder to specify a boldness relative to
the element’s parent element, like this:

body {font-weight: bold;}
p {font-weight: bolder;}

In this case, <body> elements are bold, but <p> elements are, if possible, dis-
played in an even heavier face. Times New Roman has no weight beyond
bold, so a bolder value has no effect. However, in the following case, text
outside <p> tags is regular, and text inside <p> tags is made bold:

body {font-weight: regular;}
p {font-weight: bolder;}

95Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 95

Using the Font-Variant for Small Caps
The small-caps value is a specialized variant on normal letters. It creates cap-
ital letters that are about 75 percent the size of the normal capitals. This isn’t
used often, but it looks good when you need it. You’ll see it most often when
the terms AD or BC are used to indicate dates, as in the following example.

<html>
<head>

<style>

em.smallcaps {font-style: normal;font-variant: small-caps;}

p {font-size: x-large;}

</style>
</head>

<body>

<p>
These vases were created around 4000 <em

class=”smallcaps”>b.c.Before glazing was
invented.

</p>

</body>
</html>

The result looks like this:

These vases were created around
4000 BC. Before glazing was invented.
Notice that the BC is displayed in capitals, but compare the B to the size of
the normal B in the word Before.

Simple Font-Style
The font-style property has only three possible values: normal, italic,
and oblique. Because italic is generally used only to emphasize a word or

96 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 96

phrase within normal text, you generally see the <i> tag used to specify italics
within the HTML code. The oblique style is rarely specified in a CSS style — it
merely tilts the letters of a normal font to the right so that they lean a little.
Oblique is similar to italic, but italic is actually a separate typeface design,
with slight changes to the normal font in addition to the tilt to the right. When
you specify italic for most serif fonts such as Times Roman, you get the real
italic effect. However, many sans serif fonts respond to the request for italics
by merely generating a slight offset and tilting the normal letters to the right.
In effect, sans serif italics are often actually oblique, although they’re specified
as italic. In practice, you can just ignore the oblique style.

Choosing the Right Typeface Size
Two things to remember when deciding typeface sizes for a Web page. First,
limit yourself to two or three sizes per page; too many different sizes confuse
readers and make your pages look cluttered and disorganized. (You can get
this same disorganized effect by choosing too many different typefaces.)
Second, the size should be appropriate to the space allotted to it on the page.
Using a small typeface within a large empty area can be disorienting. Equally
unattractive is large type squeezed into a small amount of space.

One more thing to consider about size: Don’t worry too much about the
impossible goal of browser-independence. Just design your Web page with
Internet Explorer set to fullscreen on your 17'' or 19'' monitor, using 800x600
or 1024x768 resolution, and the result will likely please 96 percent of the
people who visit your Web site. They’ll be using pretty much the same size
monitor and the same browser. So don’t sweat it. Trying for the lowest
common denominator among open-source software, mini-screen portable
devices, and uncommon operating systems has a predictable result: Your
Web page looks like the lowest common compromise. Trying to please every-
body, you’ll please no one. Just go with the overwhelming majority. People
surfing the Web with Linux and PDAs are used to seeing strange typeface
effects (among lots of other compromises). Your site’s awkward appearance
on their screen will be no surprise to them; they see stuff like that all the
time.

If you’re forced to design for different output devices, or even different media
types altogether (such as both screen and paper), consider creating separate
style sheets, one for each target device or medium. This approach allows you
to optimize your design for each target.

Specifying relative sizes
The differences in most people’s monitor sizes and resolutions aren’t
enormous, but using relative size (and often position) specifications when

97Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 97

possible helps. This way, you get the most predictable proportions on most
browsers. Here are the CSS values you can specify for the font-size prop-
erty: xx-small, x-small, small, medium, large, x-large, xx-large,
smaller, larger, length, percentage, inherit.

One way to indicate a size relative to the parent element is to use the values
smaller or larger, like this:

<html>
<head>

<style>

body {font-size: x-large;}

p {font-size: smaller;}

div {font-size: larger;}

</style>
</head>

<body>

This is the body text

<p>
This is one step smaller than its parent body.
</p>

<div>
This is one step larger than the parent.
</div>

</body>
</html>

Load this example into IE and you see results like those shown in Figure 5-8.

The xx-large value is the largest value in the list of possible CSS text size
values. However, if you then apply the larger value to a child element within
xx-large text, IE follows your request and goes beyond xx-large.

Controlling font size with greater precision
If you want to try for a bit more precision than “smaller” or “larger” but still
avoid specifying absolute points or pixels, use percentages. For example, to
make a paragraph font 75 percent the size of its parent div, try this:

98 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 98

div {font-size: xx-large;}
p {font-size: 75%;}

You can also use percentages higher than 100 to increase the child element’s
size relative to its parent, like this:

p {font-size: 145%;}

Specifying Absolute Measured Sizes
You can also avoid the relativistic specifications discussed so far and force
type size to be a particular unit of measurement, such as .5 inch or 12 points.
Recall that the available units of measurement are px (pixels), pt (points),
pc (picas), mm (millimeters), cm (centimeters), in (inches), em (the current
element’s approximate font size), and ex (x-height, the height of the lower-
case letter x in the current font). This example specifies that paragraph text
should be two-tenths of an inch and level-one headlines should be 24 points:

body {font-size: .2in;}
h1 {font-size: 24pt;}

Most designers use pt or px when specifying font sizes in CSS rules, so you
might as well join them. You probably already have a sense of how pt or px
work, so stick with what you know.

Figure 5-8:
Using the

relative
values

smaller
and

larger
adjusts an
element’s

text size in
relation to
its parent
element.

99Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 99

Font: The All-Purpose Property
Throughout this chapter, you’ve seen all the many ways you can specify how
a typeface should look, using font-this and font-that properties, like this:

p {font-family: Garamond; font-size: 26px;
font-weight: bold; font-style: italic;}

However, you can use a shorthand to create CSS style definitions for type-
faces: Just use the all-purpose font property. That way, you can leave out
specifying each property name (font-weight, font-family, and so on).
Just list the values you want and the browser correctly interprets them. It
can tell, for example, that the bold value can be used only with the font-
weight property, and not with font-size, font-variant, or the font-
family properties.

This same shorthand feature is available for many other CSS properties, such
as the border property. Borders can be specified using hyphenated properties
such as border-bottom, but the shorthand border property, followed by a list
of values, also works. Whether you use the long or abbreviated format is up
to you.

Normally, letting the computer take the burden off the designer or program-
mer like this is useful. However, as you might expect, the font property isn’t
as straightforward as it could be. You must memorize and be sure to follow
some silly rules, or the browser ignores your style entirely (and, of course,
provides no error message to warn you or help you fix the problem).

But if using abbreviations is your thing, go ahead and try out the font prop-
erty. The p style in the previous example can be condensed in the following
way by using the font property, like this:

p {font: bold italic 26px Garamond;}

Both styles will have the same result, but this condensed version saves some
time if you remember the rules! Here are the rules:

The first two values in the list (style and weight) can be listed in any order.
For example, you can reverse the preceding order with no ill effects:

p {font: italic bold 26px Garamond;}

You can also throw in a font-variant (small-caps) if you wish, and mix and
match those first three values any way you want. The browser accepts those
values in any order.

However, the last two values must be in size, family order. They must be the
final two values in the list, both must be present in the list, and they must be
in size, family order.

100 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 100

Nobody knows why some values can be rearranged at will, and others must
be in strict order. It’s just one of those exceptions to CSS rules that you have
to memorize.

This next style rule fails, although different browsers respond in different ways:

p {font: bold italic Garamond 26px;}

The size-family order is wrong here. This list of values ends with size, and all
such value lists must end with the font-family value. IE goes ahead with
bold italics, but it ignores Garamond and the 26px font size.

Sadly, those in charge of the CSS specifications really dropped the ball here.
Getting this font value order wrong is an extremely common error, and this
strictness is so completely unnecessary. If browsers can distinguish between
words like bold and italic, they can certainly distinguish between digits like
26px and words like Garamond. Oh well.

Adjusting Line Height
You can find a discussion of manipulating text spacing in Chapter 7, but while
we’re on the topic of the various font- properties, I want to take a brief look
at how you can manipulate the spacing between lines of text using the line-
height property.

Line heights are adjusted for two primary reasons. Headlines often look
better with less white space between the lines; tiny body text sizes are more
readable with more white space between the lines.

Here’s an example showing how you to specify a change to line height. Follow
the font-size value with a forward slash and the percent adjustment you
want to make to the line height. (100 percent is expressed by 1, 120 percent
is 1.2, 50 percent is .5, and so on.) A font size of 38 pixels with a line-height
adjustment that shrinks the default spacing to 94 percent of normal looks
like this: 38px/.94

Here’s an example that specifies two styles. Ordinary H1 headlines are to be
bold 32 pixel Arial. But the special class of “narrowed” H1 headlines are to be
at 94 percent of the default line spacing.

<html>
<head>

<style>

h1.narrowed {font: bold 38px/.94 Arial;}
h1 {font: bold 38px Arial;}

101Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 101

</style>
</head>
<body>

<h1>
This Is the H1 Style
With the Line Space Default
</h1>

<h1 class=”narrowed”>
This Is Our Superior H1 Style
With the Lines Closer Together
</h1>

</body>
</html>

As you can see in Figure 5-9, the adjusted line-height at the bottom of the
browser is better looking than the default at the top. Newspapers and maga-
zines, not to mention TV, billboards, and other media, almost always tighten
the line spacing in their headlines. It simply looks better than leaving unnec-
essary white space floating in between the lines.

Kerning — adjusting the spacing between the individual letters in a headline —
is also a common way to add visual appeal to text displayed in large font sizes.
You see how to accomplish kerning in Chapter 7. Chapter 7 also covers
several additional text management properties that relate to positioning:
word-spacing, text-indent, indentation, and vertical-align.

Figure 5-9:
The

modified
line spacing

on the
bottom

looks better
and is more

typical of
contempor-

ary headline
style.

102 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 102

Decorating Text with Underlining
and Strikethrough

For some reason, those-who-know-best (also known as the CSS specification
committees) sometimes choose weird terminology. Decoration isn’t a very
good word for underlining and similar text effects. The text-decoration
property doesn’t actually refer to decorating the text, which suggests adding
special ornamental designs like monks used to do in medieval times. Rather,
this property governs underlining, overlining, strikethrough, and a bizarre
effect called blinking.

The CSS overlords, in their wisdom, also went a bit whacko when they
decided not to call one of the values strikethrough like everyone else does.
Instead, they thought it might be fun to add a little confusion and call that
style line-through. Get used to it.

Overlining (a line drawn above the text) can be used for a visual effect, or as
a way of separating zones of text. Fortunately, IE in its wisdom, doesn’t sup-
port the blinking text trick, which to most readers would be a thoroughly
annoying distraction.

Underlining, overlining, and strikethrough (see Figure 5-10) are straightforward:

<html>
<head>

<style>

h1.over {text-decoration: overline;}
h1.under {text-decoration: underline;}
h1.strike {text-decoration: line-through;}

</style>
</head>
<body>

<h1 class=”over”>This is an overline.</h1>

<h1 class=”under”>This is an underline.</h1>

<h1 class=”strike”>This is a strikethrough.</h1>

</body>
</html>

103Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 103

Transforming Text with Capitalization
If you thought that using the term decoration for underlining was strange, con-
sider using “transform” to describe capitalization. With the text-transform
property, you can specify initial caps, all-uppercase, or all-lowercase.

You might well ask: If you want all uppercase on a Web page, why don’t
you just press the Caps Lock key on your keyboard and forget about this
text-transform property?

First, you might want to make the text effects dynamic. Say that you want to
uppercase a sentence if the user clicks it. You can write a script that adjusts
the text-transform property to respond to user behaviors. Second, you
might want to make the capitalization conditional. Perhaps you want to use
initial caps for some headline styles in your site, but in other locations, you
want all-caps.

The only strangeness in the value names is that what the CSS leadership con-
fusingly calls the capitalize value is, in reality, initial caps.

<style>

h1.initcaps {text-transform: capitalize;}
h1.uppercase {text-transform: uppercase;}

</style>

Figure 5-10:
The text-
decora-

tion
properties

add various
kinds of

lines to text.

104 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 104

This code results in the headlines shown in Figure 5-11:

You might want to avoid using the transform property for initial caps.
English punctuation usually avoids making prepositions and articles initial-
capped. Therefore, the words into and the should not be capitalized in the
headline shown at the top of Figure 5-11.

Shading with Drop-Shadowing
A drop shadow is black or gray shading around each letter that makes the let-
ters look as if they were casting shadows. It’s often a good way to add dimen-
sion and realism to images or text.

Some graphic and typographic effects are best left to graphics applications
like Photoshop. Those applications are dedicated to creating visual effects
more sophisticated and subtle than any that can easily be achieved via HTML
or CSS code. After all, graphics applications have tools that allow you to pre-
view the effects; to use the mouse to assist in designing and modifying the
effects; and to compare effects side-by-side. What’s more, the built-in effects
in a graphics application are carefully designed. For example, their drop-
shadow uses a gradient for the shadow rather than a solid, unnatural looking
black or gray. Put simply, leave the fancy visuals to applications that special-
ize in such things.

Figure 5-11:
You can use

the text-
transform

property to
specify cap-

italization.

105Chapter 5: All About Text

10_584251 ch05.qxd 2/10/05 11:23 PM Page 105

CSS2 includes a drop-shadow property, but mercifully, no browser on earth
has implemented this feature. If you want to create a drop-shadow, do it in
your graphics application, save it as a .jpg file, and then put the resulting
 element into your Web page. Figure 5-12 illustrates the 3D effect you
can get by adding a drop-shadow effect to text:

Figure 5-12:
Drop

shadows
can be a

great visual
effect, but

create them
in a

graphics
application

(like this),
not with

CSS.

106 Part II: Looking Good with CSS

10_584251 ch05.qxd 2/10/05 11:23 PM Page 106

Chapter 6

Managing Details in Style Sheets
In This Chapter
� Describing units, percentages, and lengths

� Adding color to your text

� Coloring the background

Among the various features of CSS that Web designers appreciate is the
fine control it gives you over such details as color, text spacing, posi-

tioning, and size of various elements. Plain HTML comes to seem rather
crude and clumsy after you’ve had some experience playing around with all
the freedom that CSS gives you. With CSS, you decide just how things should
look on your pages.

Specifying Size and Position
In a CSS style definition (or rule), you can describe positions and sizes in
many ways, using may different units of measurement. You can often choose
whatever unit you want, although certain specific kinds of measurements
work best in certain situations.

For example, many designers working with paper and ink are used to specify-
ing typefaces in points. A point is an absolute length: 1/72 of an inch. Using
absolute type size specs for a magazine or book works just fine — after all,
the user cannot shrink, stretch, or change the aspect ratio of a page in a
book. (Aspect ratio is the ratio between height and width.) Browsers, though,
can be resized at will. If you drag one side of a browser, you’re changing it,
making it thinner or fatter. In other words, your changing its shape, its aspect
ratio, from, say, a square to a rectangle.

For fonts displayed in a browser, a relative unit of measurement is superior
to the traditional points. Unlike absolute measurements such as points or
inches, a relative unit scales with font sizes. As a result, you get more pre-
dictable results in Web pages with relative units of measurements specifying
type size. One of the most useful relative units of measurements for a Web
designer is the em — more on that later in this chapter. Although the em is

11_584251 ch06.qxd 2/10/05 11:19 PM Page 107

useful, in practice, most designers still use points or pixels when specifying
type size. Perhaps it’s just force of habit, but in any case the results usually
look fine in most browsers.

Measuring length
Before I get to an explanation of just what em actually means, I first want to
take a look at all the units that measure length:

� px (pixels): Pixels are the smallest unit on a display — the dots you can
sometimes see if you get close enough to a TV. For example, setting your
monitor resolution to 800x600 means that it is 800 pixels wide by 600
pixels high.

Pixels can be a useful way to specify font size, but the drawback is that
if you specify pixels, that overrides the custom font size option in
Internet Explorer — so users cannot adjust from “large” to “largest”
and so on. However, you should always use px to describe image sizes.
Images are already measurable in pixels (you can see the measurements
by loading the image into any graphics application).

� pt (points): A point is equal to 1/72 inch. Points (and picas) are classic
typeface measurements. Most browsers default to a 12-point serif
typeface.

� pc (picas): One pica equals 12 points.

� mm (millimeters): A millimeter is .0394 inches, so one inch contains
roughly 26 millimeters. One centimeter contains 10 millimeters. Much of
the world uses this metric system.

� cm (centimeters): A centimeter is .3937 inches, so an inch contains
roughly 2 1/2 centimeters.

� in (inches): Inches are a unit in the English or imperial system — used
in the United States. England and a few remnants of the colonial period
also stayed with the imperial system for a long time, but caved recently.
The British government complied in 2000 with European metrication
and it is now a criminal offense to sell by the pound anywhere in Her
Majesty’s realm. A man in Cornwall, for example, reportedly had to pay
court costs after being caught selling mackerel at £1.50 a pound.

An inch is based on the distance between the first knuckle and the end
of a now-forgotten king’s thumb. For 50 years, persistent efforts to edu-
cate and legislate away the imperial system in favor of the metric have
failed in the U.S.

� em: Em is a unit of measurement derived from the approximate width of
the letter m of a font. This is considered generally the best way to spec-
ify font size in CSS, although few designers follow this advice.

108 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 108

� ex (the x-height): Ex is the x-height, or height of the lowercase letter x,
of the font of the current element. Browsers usually divide em by half
to get the ex-height. This unit of measurement isn’t currently as useful
as the em because it’s not as predictable an average for all typefaces.

� % (percent): Percentages are excellent for specifying relative size (it can
be relative to an ancestor, the parent, and so on).

Units of measurement are not case-sensitive. You can capitalize them or not,
as you wish. Likewise, in IE, you can include a space between the number
and its unit, or not: For example, 2 in is equivalent to 2in. Other browsers
don’t like the space. For simplicity, using lowercase and avoiding unneces-
sary spaces is generally a good idea when working with CSS. Just get into the
habit of the 2in or 24px format and you’ll be fine, unless the CSS committees
decide to reverse themselves in the future.

Understanding little em
Because experts recommend that you use em when designing a Web page
that you want to look just so, it’s worth taking a closer look at what this unit
actually means. Traditionally, the em was the width of the letter m.

Perhaps you’ve heard the term m-dash or em-dash, which is the dash usually
employed in publishing. It’s a horizontal line — like these — equivalent to the
width of the typeface’s letter m (this isn’t strictly a precise equivalent in
many typefaces). There’s also an en-dash. Guess what it’s based on.

Em and ex units are relative to each typeface. This is useful because it means
that the size specified by em changes in a precise way based on the user’s
monitor resolution, preference settings, and other factors. In other words,
using em allows you to specify what happens relative to the typeface. The
result is proportional to the other qualities of the typeface and surrounding
text. Also, relative specifications like em allow people with handicaps to
enlarge the typeface in their browser as necessary. Fixed specifications like
px or pt don’t offer the user this option.

Em and ex are traditional typesetter’s unit of measure, but their meanings in CSS
are slightly modified. For one thing, computers calculate ex by simply dividing
em in half. This is easier to compute, but only an approximation for most fonts.
Em in CSS is the font size in pixels. This is useful because you can specify em
units and rely on them being relative to the parent (or other) element’s font.

Here’s an experiment to get the idea of how em is relative to another element.
In this code, text within the element is defined as 26px, but text within the
paragraph element is defined as 1.5em, or, put another way, one and one-half
times the size of the parent. Later in the HTML code, the paragraph element
is enclosed (parented) by the body element. Therefore, the paragraph text is
rendered at 1.5x26 pixels (or 39 pixels).

109Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 109

<html>
<head>

<style>

body {font-size: 26px;}

p {font-size: 1.5em;}

p.abs {font-size: 39px;}

</style>
</head>
<body>

some text

<p>
some text (1.5 em of the parent body).
</p>

<p class=”abs”>
some text (39 pixels).
</p>

</body>
</html>

The text in the abs class version of <p> is rendered the same size as the ordi-
nary <p>. The <body> element is a parent element of the <p>, and <p> is
defined as 1.5em of its parent. The parent body uses 26 pixels as its text size,
so 26x1.5 results in 39 pixels. You can see the effect of the relativity between
em and its parent <body> element in Figure 6-1:

Figure 6-1:
The second

line —
a child

element
set to

1.5em —
is therefore

1.5 times
the size of

the first line.

110 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 110

Figuring the Percentages
I switch now from considering ways to specify text size, to the use of percent-
ages as a way of specifying the size or position of larger elements, such as
paragraphs. This next example illustrates how you can use percentages to
specify the width of a whole paragraph (not the font size of its text). In other
words, this percentage value will tell the browser when to break a line of text
into two lines (rather than how large to make the characters of text).

If you’re familiar with such classic HTML percentage specifications as
<p width=”80%”>, you’ll have no problems understanding how percentages
work in CSS. That HTML code in effect says, “Make this paragraph 80 percent
(or four-fifths) as wide as the user’s browser.” In other words, an element’s
percentage is in relation to its container or parent.

CSS percentages work the same way. Here’s an example that combines both
CSS and HTML percentage values.

<html>
<head>

<style>

p.csspercent {margin-right: 20%}

</style>
</head>
<body>

here’s some ordinary body text

<table width=”80%”>
text at eighty percent of the parent.
</table>

<p class=”csspercent”>
text at eighty percent of the parent.
</table>

</body>
</html>

First, this example displays unmodified, ordinary body text that fills the hori-
zontal space in the browser, and then a table defined as 80 percent breaks and
starts a new line when it reaches 80 percent across to the right side. Finally,
a paragraph behaves the same way as the table, breaking at the 80 percent

111Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 111

mark on its line — because you specified that the p.csspercent style had
a 20 percent value for its margin-right property. You can see these effects
in Figure 6-2:

This next example shows how to use the CSS margin-right and margin-
left properties with percentages:

<html>
<head>

<style>

p.leftside {margin-right: 50%}
p.rightside {margin-left: 50%}

</style>
</head>
<body>

here’s some ordinary body text that goes the full distance
across the browser window, then wraps to

the next line down.

<p class=”leftside”>
here’s some ordinary paragraph text that stops half way

across the browser window, then wraps to the

Figure 6-2:
Setting a

table’s width
property to
80 percent

has the
same effect

as setting
a CSS

margin-
right

property to
20 percent
— all else

being equal.

112 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 112

next line down.
</p>

<p class=”rightside”>
here’s some ordinary paragraph text that starts half way

across the browser window, then wraps to

half way across the next line down.
</p>

</body>
</html>

Figure 6-3 illustrates the effect of 50 percent margins, both right and left:

Adding a Bit of Color
Color is useful for both the design and the organization of a Web page.
Choosing effective, appropriate, and harmonic colors contributes quite
a bit to the overall success of your page. Perhaps less obvious is the role
that color plays in cueing the eye to the structure and logic of your layout.

You can create logical zones with color, just as you do with tables or lines.
For example, you can help your users by coloring all your links the same
color and grouping them in a separate area on the page — with a common

Figure 6-3:
With CSS,

you can
pretty much

position
elements

anywhere
you want

them.

113Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 113

background color underneath. All this helps the visitor to your site under-
stand that these items in this area, with these colors, have something in
common. And if you really want to attract attention to them, make them puce,
lavenderblush, or some other unusual color. You can tie your color choices
into the content of the Web page too: For example, use a yellow-orange back-
ground for a paragraph that contains a warning about a radioactivity danger.

Even superior to plain color in many situations is a designed background —
a gradient, texture, a picture of clouds . . . anything that visually amplifies
the message of your site. Many of the best-designed sites load a background
image because creating such an image in a graphics program like Photoshop
gives you control over every single pixel of your background. You can create
pleasing, complex designs of any kind, not simply a single static color:

<body background=”WaterView.jpg”>

If you combine graphically designed backgrounds with animation (see
Chapter 16), you can aspire to win an award . . . a Web page design award.

Here are some cool sites that can give you some creative inspiration:

http://www.philipkoether.com/

futurefarm.nl

http://www.tomoco.de/

The following page doesn’t feature flashy animation, but the page is well-
designed and shows off some of what CSS can do (while you’re visiting this
site, take a look around — it has some great CSS tutorials and resources):

http://glish.com/css/noah.asp

I have a lot to say about designing backgrounds in Chapter 7 and Chapter 16.
For now, consider color alone.

As with setting margins, positioning text, and many other aspects of Web
design, CSS is clearly superior to traditional HTML when it comes to manag-
ing color. With CSS, you can specify the foreground (text and borders) and
background colors of pretty much every element. With traditional HTML,
your ability to set colors is restricted only to a few elements.

CSS1 and CSS2 group all color into a “Color and Background” set of proper-
ties, but in CSS3 promises a new Color family, complete with various new
features such as opacity and a new naming system. See Chapter 15 for more
details on what CSS3 is expected to offer the designer.

114 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 114

Creating special paragraph styles
Assume that you’re writing a Web page that contains special warning para-
graphs, and you want these warnings to stand out. In addition to making
them italic, you want the text to be a bright pumpkin color. To achieve this
effect, just define a paragraph style called warning (or whatever you want to
name it), and then add the italic and color specifications, like this:

<html>
<head>

<style>

p.warning {color: #ffcc33; font-style: italic;}

</style>
</head>
<body>

<p>An ordinary paragraph blah blah</p>

<p class=”warning”>
Warning: Wow! Here comes a whole bunch of gnats! What to do:

cover yourself and your loved ones with netting
and crouch down. Keep your mouth shut, too!

</p>

</body>
</html>

Calculating color
How do you figure out that color #ffcc33 is pumpkin and not, say, brown, or
even an alarming color like fuchsia? When writing the previous CSS style, I
didn’t just guess the number #ffcc33, did I? After all, the possible color speci-
fications range from 000000 (black) up to ffffff (white). In between are (poten-
tially anyway) nearly 17 million colors. (For you sticklers, the precise number
is 16,777,216.) And what kind of number system uses letters of the alphabet
anyway? It must be pretty lame. (In fact, it is pretty lame, but computer pro-
grammers have been using this system for decades, so it’s going to take a
while yet to get rid of the monster.)

Some people are pretty color-sensitive, but no one is that sensitive. What
could be less descriptive of a color than a code like #ffcc33? You’ll never
remember that #ffcc33 produces pumpkin, or that #00ff00 gives you lime
green.

115Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 115

You can easily select colors in any of several ways and thereby avoid that
bizarre scheme that employs totally useless codes. Here are my suggestions
for specifying a CSS color:

� Create a background image in a graphics program and use its tools
(such as a color wheel or gradient) to select your color.

� Use a special Style Editor in programs like Microsoft’s Visual Studio to
pick a color from a table of colors (as shown in Figure 6-4). It then trans-
lates your choice into a color number for the CSS style, such as #ffcc33.

� Choose a color from the list of descriptive color names (they work in
Internet Explorer). The list is provided below in the section titled “Using
the Color List.” (You can also find this list in this book’s Cheat Sheet
inside the front cover.)

You can also see how the colors will look in a browser and at the same time
get the values by visiting online browser-safe color charts at sites such as
this one:

www.primeshop.com/html/216colrs.htm

Using the color list
I’m not going to bore you with the details on what the #ffcc33 code means.
It’s called a hex number, but don’t put a hex on yourself by trying to figure
out what it means and how it works. It’s too tedious for words, believe me.
I did learn it years ago and, try as I might, I cannot forget it. It’s taking up an
area of my brain that I wish I could reuse for something important, but it’s

Figure 6-4:
You can

click on a
color in this
palette built

into Visual
Studio.

116 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 116

permanently occupied by useless information, like “The name of the drum-
mer from Cheap Trick is Bun E. Carlos.” See what I mean?

I have no idea why people still bother with hex these days (early in comput-
ing, several decades ago, hex and binary arithmetic were marginally useful).
Manipulating hex numbers themselves is hard enough, but when you try to
do arithmetic with them . . . well, it’s easier to uncook spaghetti.

When you want to select a color for a Web page element, just pick a color
from a visual representation (like a color gradient in Photoshop or a tabular
palette like the one in Visual Studio shown in Figure 6-4, or an online color
chart). Or, if you must, pick one from the list of color names that follows.

Don’t try to deal with hexadecimal numbers. Who could possibly memorize
which color goes with which “number?” Few people even understand the
numbering system itself. And, truly, you don’t need to understand it at all.

Here’s Microsoft’s list of colors that IE can recognize by name. No need to
bother translating these names into hex values at all:

AliceBlue, AntiqueWhite, Aqua, Aquamarine, Azure, Beige, Bisque, Black,
BlanchedAlmond, Blue, BlueViolet, Brown, BurlyWood, CadetBlue, Chartreuse,
Chocolate, Coral, CornflowerBlue, Cornsilk, Crimson, Cyan, DarkBlue,
DarkCyan, DarkGoldenrod, DarkGray, DarkGreen, DarkKhaki, DarkMagenta,
DarkOliveGreen, DarkOrange, DarkOrchid, DarkRed, DarkSalmon,
DarkSeaGreen, DarkSlateBlue, DarkSlateGray, DarkTurquoise, DarkViolet,
DeepPink, DeepSkyBlue, DimGray, DodgerBlue, FireBrick, FloralWhite,
ForestGreen, Fuchsia, Gainsboro, GhostWhite, Gold, Goldenrod, Gray, Green,
GreenYellow, Honeydew, HotPink, IndianRed, Indigo, Ivory, Khaki, Lavender,
LavenderBlush, LawnGreen, LemonChiffon, LightBlue, LightCoral, LightCyan,
LightGoldenrodYellow, LightGreen, LightGrey, LightPink, LightSalmon,
LightSeaGreen, LightSkyBlue, LightSlateGray, LightSteelBlue, LightYellow,
Lime, LimeGreen, Linen, Magenta, Maroon, MediumAquamarine, MediumBlue,
MediumOrchid, MediumPurple, MediumSeaGreen, MediumSlateBlue,
MediumSpringGreen, MediumTurquoise, MediumVioletRed, MidnightBlue,
MintCream, MistyRose, Moccasin, NavajoWhite, Navy, OldLace, Olive,
OliveDrab, Orange, OrangeRed, Orchid, PaleGoldenrod, PaleGreen,
PaleTurquoise, PaleVioletRed, PapayaWhip, PeachPuff, Peru, Pink, Plum,
PowderBlue, Purple, Red, RosyBrown, RoyalBlue, SaddleBrown, Salmon,
SandyBrown, SeaGreen, Seashell, Sienna, Silver, SkyBlue, SlateBlue, SlateGray,
Snow, SpringGreen, SteelBlue, Tan, Teal, Thistle, Tomato, Turquoise, Violet,
Wheat, White, WhiteSmoke, Yellow, YellowGreen.

Just go ahead and stick one of these (often gracefully descriptive) names
like PapayaWhip into your color property specification, like this:

p.warning {color: lightslategray;}

117Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 117

And you’ve got a color that looks like . . . well . . . light gray slate.

Nobody’s perfect. Microsoft spells gray with an “a” most of the time, but else-
where — in this same list — they use an “e,” as in “LightGrey.”

Coloring borders
Foreground color doesn’t apply only to text. You can also use it to specify
the color of borders. In this next example, you set the color property of an
image to skyblue. (Alternatively, you could use the border-color property
if you wish.) In addition, you set the border-width to make it larger than the
default. You also must specify a border-style property:

<html>
<head>

<style>

img {border-style: solid;border-width:25px; color: skyblue;}

</style>

</head>
<body>

</body>
</html>

If you want to try this example, first save a graphics file in the same directory
as this .htm file and name that file GrandfatherHouse.jpg.

As you can see when you test this example, a border in light blue is placed
around the graphic. See Figure 6-5.

A monochromatic, plain border is pretty dull. It harkens back to earlier days
when computers were straining to provide even simple color effects.

I suggest that you avoid the plain CSS frames and consider generating a cool
frame in a graphics program. Then you can drop your image into that frame
in the graphics program itself and simply save the whole thing as a new .jpg
file. The frame then becomes part of the image itself, and you just load that
image file into your Web page. You don’t have worry about using the simple

118 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 118

built-in border style as a frame — and the one you built in a graphics applica-
tion is almost guaranteed to be more sophisticated and interesting than any-
thing you can do with CSS. See the example in Figure 6-6.

Using inset border colors
If you want to create subtle, attractive borders entirely within the capabilities
of IE, you can use the inset command with colors for the various borders
around a graphic. This creates a beveled look that’s certainly a step up from
the flat, plain border shown in Figure 6-5. Take a look at Figures 6-7 and 6-8:

Figure 6-6:
This

vignette
border was

created
automati-

cally in
Micrografx’s

Picture
Publisher.

Figure 6-5:
Borders can

be colored
with an
image’s
color

property.

119Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 119

The border in Figure 6-7 was created with this code:

<html>
<head>

<style>

img {

border-right: silver inset; border-left: silver inset;
border-top: silver inset;border-bottom: silver inset;

border-width:12px;}

</style>

</head>
<body>

</body>
</html>

Matting means cutting an opening into a mat board that is the same size of a
photo, painting, print or other artwork, and then attaching the art to the back
of the mat and framing it. This provides a border between the frame and the
art. It’s almost always used when displaying photos because it provides a bit
of distance between the photo itself and the glass in the frame. Matting also
emphasizes the artwork.

To get the border displayed in Figure 6-8, make this simple change to the pre-
ceding code:

border-width:5px;

Figure 6-7:
You can use

the inset
command to

create a
dimensional,

shaded
border like

this.

120 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 120

Where does light come from?
As long as we tackle relativity theory in this book, why not also explore the
origin of light itself or at least the psychophysics of light sources?

Microsoft darkens the color used for the left and top borders of its inset
design (for depressed, clicked buttons in Word, for example), and leaves the
right and bottom frame sides light. Buttons just sitting there without being
clicked are outset and the left and top borders are lighter than the right and
bottom borders. Why?

In Windows graphic style (menus, buttons, window frames, and so on), the
light is always assumed to be coming from the upper-left corner of the screen.
Therefore, a visually protruding object like a button picks up highlights along
its top and left sides. Shadows fall along the right and bottom of the object.
However, if the object is supposed to be sinking into the background — such
as an inset frame or a clicked button — the process is reversed and the top
and left sides are darkened.

This effect actually works pretty much the same way in the real world: When
you’re reading outdoors, if you’re like most people, you maneuver your lounge
chair or towel until the sun shines from your left side — and, of course, the
sun is above.

Take a look at your work area. Most people prefer to put lamps to the left
of and above their desk or reading chair. As an experiment, turn this book

Figure 6-8:
Adjust the
border-
width

property to
get different
effects, like
this simple

matting
effect.

121Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 121

upside down and see what happens to your perception of the frame in Figure
6-7. Instead of seeming to be inset, doesn’t it now appear to be outset? Don’t
kid yourself: If you weren’t prejudiced to think of light coming from the top
left, you would just as likely see this upside down frame as inset — even with
the light coming from down low and to the right of the frame.

Try changing the preceding CSS style code from inset to outset, and then
reload the page into IE to see the effect:

img {

border-right: silver outset; border-left: silver outset;
border-top: silver outset;border-bottom: silver outset;

border-width:12px;}

The outset effect, which looks as if the frame protrudes toward the viewer, is
shown in Figure 6-9. Notice that the shadows and highlights are different here
compared to the inset style in Figure 6-8.

Other CSS border styles you can experiment with in addition to inset and
outset include groove and ridge.

CSS offers many significant improvements on traditional Web design facilities
and is far better than classic HTML. With CSS, you can do many things that are
visually impressive, as you see in various examples in this book. But don’t
burden CSS with all your graphics effects. For example, if you want to build a
background that creates a particular texture, you can sometimes accomplish
it by superimposing image files, repeating patterns, and resorting to other CSS
tricks. But for heaven’s sake, before trying to get some special effect via CSS,
first ask yourself: Can this effect be achieved in a graphics program more
easily, or with a better result? Often the answer is yes. Don’t try to force CSS
to do things it’s not very good at; graphics programs contain many special
tools for creating visual effects. Always ask, “Can Photoshop do this better?”
Take a look at the frame in Figure 6-10. A graphics program can do lots of
things like this. CSS can’t.

Figure 6-9:
The outset

effect looks
as if the

frame
protrudes

toward the
viewer.

122 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 122

For those on a budget, or for those who haven’t mastered graphics application
software and therefore can’t use programs like Photoshop, you can find online
advice about pushing CSS to its limits. (And remember, you must sometimes
limit yourself to CSS when page load time is a major consideration.) Here’s
one good site that really gets a great deal of bang for the CSS buck:

http://www.sitepoint.com/

Coloring the Background
The background of an element includes its border and any padding. Padding
is explored in more detail in Chapter 9, but essentially, padding adds space
around an element. Here’s an example that illustrates both the padding and
the background-color properties:

<html>
<head>

<style>
h1 {background-color: silver; padding: 6%;}
</style>

</head>

Figure 6-10:
Use

graphics
programs

such as
Photoshop

to create
specialized

borders and
other visual

effects.

123Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 123

<body>

<H1>Padding around a Headline</H1>

</body>
</html>

The result of the style in this code is shown in Figure 6-11:

The background-color property accepts the same color values as the fore-
ground color property. By default, backgrounds are transparent, so any tex-
tures, images, or other elements that are on the bottom show through. Also,
you can give a background color to almost any element — from inline em ele-
ments all the way up to the entire body element.

Try to avoid lurid color combinations. Some Web page designers are tempted
to create “special effects” by using loud, some would even say vulgar, color
patches on their pages. Unless you have a very good reason to do this, you
should avoid the haphazard, childish appearance of a page splattered with
various zones of color. Here’s an example of what I mean. This page has a
blue background, with lavender, orange, hot pink and other bizarre color
combinations. Not only are such pages difficult to read; they’re usually just
simply ugly as well, as you can see in Figure 6-12.

<html>
<head>

<style>

body {background-color: DodgerBlue;}
i {background-color: OliveDrab; color: orange;}
p {background-color: lavender; color: HotPink;}

</style>

Figure 6-11:
Padding

expands this
background

color
around this

element.

124 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 124

</head>
<body>

<p>Paragraphs are rendered in startling colors!</p>
<p>And <i>italic text within those paragraphs</i> is even

more annoying</p>

</body>
</html>

Figure 6-12:
This looks

bad enough
as printed in
this book in
grayscale.

Imagine
how much

worse it
looks in a

browser in
full,

blooming
color.

125Chapter 6: Managing Details in Style Sheets

11_584251 ch06.qxd 2/10/05 11:19 PM Page 125

126 Part II: Looking Good with CSS

11_584251 ch06.qxd 2/10/05 11:19 PM Page 126

Chapter 7

Styling It Your Way
In This Chapter
� Spacing text with kerning

� Adjusting line spacing

� Adjusting pacing between words

� Aligning text

� Adding textures

� Creating custom backgrounds

If CSS did nothing other than give you powerful control over how your Web
pages look, it would still be a tremendous improvement over HTML. In this

chapter, you explore various ways to enhance the appearance of your Web
pages using special tools and techniques. You start by kerning — adjusting
the space between text characters. Later on in the chapter, you discover how
to align text for effect, add textures, and create custom backgrounds.

Kerning for Better Headlines
Kerning — adjusting the space between letters — is sometimes wrongly used
for emphasis. Some Web page designers try to add e m p h a s i s by kerning
to get extra space between letters. But then, poor text design includes many
other ugly forms of “emphasis” in addition to kerning, such as boldface, bright
colors, all caps, and so on. These visual tricks should be avoided as a way of
emphasizing a word or phrase. For emphasis, use italics. And italics only.

Widely spaced letters are sometimes used in headlines though, particularly
with single-word heads, such as a letters-to-the-editor column like this:

L E T T E R S

Kerning to tighten letter spacing comes into its own in headlines. You
decrease the space between the letters to squeeze the words together and
improve the headline’s appearance. Most typefaces (except monospaced

12_584251 ch07.qxd 2/10/05 11:18 PM Page 127

typefaces such as Courier) have variations in the distance between the let-
ters to improve the font’s readability. Kerning allows you to make custom
adjustments to letter spacing — specifically, to bring certain letter pairs
closer together. (Sometimes kerning is used to move letters apart, too, such
as when an italic character “leans” into a close parentheses mark.)

A simple, less effective kind of kerning can be accomplished in CSS using the
letter-spacing property, like this:

<h1 style=”letter-spacing: -0.06cm”>This Headline is Slightly
Squeezed</h1>

Here’s a complete example showing the same headline kerned as well as not
kerned, as shown in Figure 7-1.

<html>
<head>

<style>

h1 {font-size:44px; letter-spacing: -0.12em}
h1.unkerned {font-size:44px; letter-spacing: 0.00em;}

</style>
</head>
<body>

<h1>This Headline is Slightly Squeezed through Kerning</h1>

<h1 class=”unkerned”>This Headline is Slightly Squeezed
through Kerning (Not!)</h1>

</body>
</html>

As you can see in Figure 7-1, when you use a negative value for letter-spacing
(-.12em in this example; em being the width of the letter m), the headline’s let-
ters move together. Traditionally, slightly tightening the space between head-
line letters is considered aesthetically superior to the unkerned version of the
same headline. See if you don’t agree that the bottom headline in Figure 7-1
looks a little too loose at the default letter spacing (0em means: no change to
the letter spacing).

Why kern headlines? Because your Web pages look more professional and, in
fact, are more readable. Studies have shown that people don’t read text one
letter at a time. Instead, most readers glance at each word and almost instantly
recognize the shape of the entire word. If you tighten the interior space, you
graphically emphasize that word’s individual shape.

128 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 128

You don’t need to kern every pair of characters, however. That’s why using
the CSS letter-spacing property is actually not kerning, properly speaking.
Kerning involves only adjusting some letter pairs. It’s actually a more subtle
effect than you see in Figure 7-1.

True kerning
Real kerning is done on a letter-by-letter basis, not wholesale across the entire
headline. However, you can use letter spacing to achieve this hand-kerning.
Here’s an example that defines a tighter than normal letter spacing (-.06em)
combined with an even tighter squeezing of the spacing in a class called kern
(-.16em):

<style>

h1 {font-size:44px; letter-spacing: -.06em}
h1.normal {letter-spacing: normal}
.kern {letter-spacing: -0.16em;}

</style>
</head>

Figure 7-1:
Negative

word
spacing

brings
characters

closer
together;

and
headlines

usually look
better when

tightened
up.

129Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 129

<body>

<h1>This Headline is Slightly Squeezed through Kerning and Heavier
Kerning</h1>

<h1 class=”normal”>This Headline is Slightly Squeezed through
Kerning (Not!)</h1>

The results of this code are shown in Figure 7-2:

Here in Figure 7-3 is a closer look at the kerned and unkerned word:

Figure 7-3:
The letters

Kerning are
tighter in the

top version
than the
bottom.

Figure 7-2:
Notice in

particular
the top

headline’s
use of the

tighter
characters
in the first
use of the

word
Kerning.

130 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 130

This attention to letter spacing may seem like a bit of trouble — and it is —
but if you want your headlines to look better, effective kerning is the key. Of
course, you should specify the font size, and perhaps even the font face, to
ensure that the results the user sees are the same that you see when kerning
the headline. You need not kern every headline, but larger typesizes in partic-
ular benefit from a bit of tightening.

If some of the characters in a headline look too loose to you, you might want
to take the time for a little manual adjustment. Kerning is often particularly
effective when a capital letter overhangs a lowercase letter, the way the K
overhangs the e in Kerning. Without kerning, there’s an unseemly gap
between the letters, as shown in Figure 7-4:

Switch now to a sans serif font like Arial to see the effect on a typical headline
typeface:

<style>

h1 {font-family: “Arial Black”; font-size:48px; letter-
spacing: -.06em}

h1.normal {letter-spacing: normal}
.kern {letter-spacing: -0.20em;}
.ultrakern {letter-spacing: -0.26em;}

</style>

Ultra kerning
Notice that I had to adjust the value for the .kern class to .20em when moving
to this different font (compare the code in the previous example, which was

Figure 7-4:
When

uppercase
letters

overhang
lowercase,

kerning is
especially
helpful to

improve the
appearance

of the text.

131Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 131

set to .16 for the Times Roman font). You have to fiddle a bit until you get
the desired effect when kerning. I also added a new class named ultrakern
for even tighter spacing, and then I applied both classes where needed in this
code:

<body>

<h1>This Headline is Slightly Squeezed through Kerning and
Heavier Kerning</h1>

<h1 class=”normal”>This Headline is Slightly Squeezed through
Kerning (Not!)</h1>

</body>

The result is shown in Figure 7-5. The e is shoved under the K using very tight
spacing.

You can see the effect of kerning even more clearly in Figure 7-6.

Kerning is also frequently used to close the gap between a character and a
punctuation mark that follows it. Kerning can also be used to reduce the size
of the space character, thereby reducing space between words and bringing
words closer together. You explore the CSS word-spacing property shortly.

Figure 7-5:
You can see
the effect of
two levels of

kerning in
the second

use of the
word

Kerning.

132 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 132

Kerning is browser-sensitive, so if you’re concerned about making your kerned
headlines look good in Netscape or some other browser, load the page into that
other browser and see if further adjustments are necessary to achieve the
lowest common denominator compromise between Internet Explorer and the
other browser.

Vertical Tightening
Multi-line headlines should also be tightened up a bit vertically by adjusting
the line spacing: reducing the white space between lines of text, as illustrated
in Figure 7-7. Line spacing is known in typography as leading because typeset-
ters once shoved in or removed spacers made of lead to separate the lines of
type.

Adjusting percentages
Recall from Chapter 5 that you can adjust the line spacing by adding a per-
cent figure to the font size. You follow the font-size value with a forward
slash and the percent adjustment you want to make to the line height. In this
case, I specified that it be 99 percent, but you can fiddle around with the
spacing until it looks good to your eye:

<html>
<head>

<style>

h1.spaced{font: bold 48px/.99 “Arial Black”; letter-spacing:
-.06em;}

Figure 7-6:
Kerning

helps the
eye

recognize
unique word

shapes
quickly.

133Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 133

h1 {font-family: “Arial Black”; font-size:48px; letter-
spacing: -.06em;}

h1.normal {letter-spacing: normal; font-size 48px;}
.kern {letter-spacing: -0.20em;}
.ultrakern {letter-spacing: -0.26em;}

</style>
</head>
<body>

<h1 class=”spaced”>This Headline is Slightly Squeezed through
<span

class=”ultrakern”>Kerning</h1>

<h1 class=”normal”>This Headline is Slightly Squeezed through

Kerning (Not!)</h1>

</body>
</html>

If you prefer, you can use the line height property instead of the fontsize
/backslash technique illustrated in the code example just above. The line-
height property can take all the usual CSS units of measurement such as px,
em, percentages, and so on. Here’s an example:

h1 {font: bold 48px “Arial Black”; letter-spacing: -.06em;
word-spacing: -.46em; line-height:48px;}

Figure 7-7:
Adjusting

line spacing
also helps

improve
the appear-

ance of
headlines.

134 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 134

Understanding baselines
The line-height property specifies the distance between the baselines of
the lines of text. The baseline is an imaginary line on which the characters
rest. Note that this is the line on which the majority of the characters rest. In
other words, a few characters have descenders — parts of the character that
go below the baseline — such as p, q, y, g and so on. These descenders are
ignored when establishing the baseline. Flip ahead to Figure 7-10 for a look at
descenders.

CSS3 Introduces Kerning Mode
If you find hand-kerning more trouble than it’s worth, perhaps you’ll want to
wait until CSS3 properties are available. A new kerning-mode property is
part of the CSS3 draft resolutions. You can use the pair value with this prop-
erty to remove space between letter pairs known to have “extra” space, such
as Ke or Yo. A kerning pair threshold property specifies at what font size you
want pair kerning to begin taking effect. Remember that kerning is generally
only useful for large font sizes (headlines primarily). An auto value for this
proposed kerning pair threshold property lets the browser decide when kern-
ing should be used; an initial value allows you to specify the font size at
which the kerning activates. However, unless this proposed automatic kern-
ing property is finely tuned to each different typeface, and to each font size,
I doubt it will be able to approach the quality of hand-kerned headlines. And
hand kerning isn’t all that much trouble, is it?

Word spacing
The word-spacing property, like letter-spacing, can be used to create
justified text (aligned on both the left and the right sides). However, Web
designers can make good use of it for a kerning effect on headlines to reduce
unneeded white space between words.

Here’s an example that reduces the spaces between words by .56 em:

<html>
<head>

<style>

h1.kernSpaced {font-family: “Arial Black”; font-size:48px;
word-spacing: -.56em;}

135Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 135

h1 {font-family: “Arial Black”; font-size:48px;}

</style>
</head>
<body>

<h1 class=”kernSpaced”>This Headline is Slightly Squeezed
through Kerning</h1>

<h1>This Headline is Slightly Squeezed through Kerning
(Not!)</h1>

</body>
</html>

As you can see in Figure 7-8, tightening the space between words improves
the look of headlines:

Figure 7-8:
Here the

space
between
words is

reduced a
bit to tighten
the headline

on top.

136 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 136

As with letter and line spacing, you can use any CSS unit for specifying word
spacing. However, em is usually the most reliable if, for some reason, another
font is substituted by the user’s browser. The em measurement is the most
accurate average character size measurement for most fonts.

You probably want to apply kerning, line space reduction, and word space
reduction all at once. This next example does just that, as shown in Figure 7-9.

<html>
<head>

<style>

h1.spaced{font: bold 48px/1.1 “Arial Black”; letter-spacing:
-.06em; word-spacing: -.46em;}

h1.normal {letter-spacing: normal; font: bold 48px “Arial
Black”;}

.kern {letter-spacing: -0.20em;}

.ultrakern {letter-spacing: -0.26em;}

</style>
</head>
<body>

<h1 class=”spaced”>This Headline is Slightly Squeezed through
<span

class=”ultrakern”>Kerning</h1>

<h1 class=”normal”>This Headline is Slightly Squeezed through

Kerning (Not!)</h1>

</body>
</html>

Notice the line that defines the spacing adjustments:

h1.spaced{font: bold 48px/1.1 “Arial Black”; letter-spacing:
-.06em; word-spacing: -.46em;}

You want to fiddle with the line spacing (the /1.1 in this example) and the
letter and word spacing values until you get just the look you want. Don’t
forget that the quickest way to edit and then view the results is achieved by
following these steps:

1. Write your code in Notepad.

2. Press Alt+F+S.

137Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 137

Your HTML code is saved to the disk.

3. Press Alt+Tab to switch to Internet Explorer.

4. Press F5 to refresh the browser.

This cycle of keystrokes allows you to rapidly view your results, and then
return to Notepad to try additional adjustments . . . until at last you’re com-
pletely happy forever after.

Aligning Text
Chapter 4 briefly introduced the idea of aligning elements — usually text
aligned to images. In this chapter, you take a closer look at the various possi-
ble alignments.

Vertical aligning
The vertical-align property specifies how text aligns vertically (surprise!)
in relation to another element, such as other text (superscripting, for exam-
ple) or an image (captioning, for example).

Figure 7-9:
Reducing

letter, line,
and word

spaces
results in
the best
design.

138 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 138

You can give the vertical-align property any of the following eight descriptive
values: bottom, baseline, middle, sub, super, text-top, text-bottom,
and top. Or you can supply a specific measurement (such as 4px) or a
percentage.

Using descriptive values
In CSS, alignment is made relative to any line-height property used with
the text. Most of the values that can be used with vertical-align are self-
explanatory, but text-bottom means that the baseline is ignored and the
imaginary line is drawn at the bottom of the typeface’s descenders.

Within block level elements, the vertical-align property has no effect rela-
tive to the block. However, the property does work to align elements within
the cells of a table.

As you can see in Figure 7-10, the baseline is an imaginary line drawn
between characters without descenders.

This is the HTML file that produces the result shown in Figure 7-10:

<html>
<head>

<style>

img {vertical-align: baseline;}

body {font-size: 24px;}

Figure 7-10:
This

image — a
rectangle
— aligns
with the

baseline,
which is the

default if
you don’t
specify a

vertical
-align
property.

139Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 139

</style>
</head>
<body>

This is baseline alignment, and here are some p’s with
descenders for reference: ppp so you can see that this image
aligns with the bottom of “so” not “ppp.”

</body>
</html>

Figure 7-11 illustrates superscript alignment.

If you use superscript or subscript, note that the text size does not automati-
cally reduce. If you want that effect, you have to specify a smaller size. To get
the effect you want (shown in Figure 7-12), you should combine the super
value with a percent downsizing of the font-size property, like this:

span.super {vertical-align: super; font-size: 70%;}
This is 70o cold!

You can also specify absolute distances up or down when using vertical align-
ment. Just use any of the usual units of measurement, such as px, inches, and
so on.

Aligning by percentages
Figure 7-13 illustrates how to use negative or positive percentages as a way of
positioning an element relative to its parent:

Figure 7-11:
You can
raise an
ordinary

element or
inline text

element (a
span, for
example)
using the

superscript
value.

140 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 140

When you specify a percentage for vertical alignment, the baseline of a text
element or the bottom edge of an image is displaced relative to the parent
element’s baseline. As you can see in Figure 7-13, the bottom of the square
image is about 80 percent below the baseline of the text (the letters without
descenders, such as the “s” and “o”).

Horizontal Alignment
Adjusting text horizontally with the text-align property is similar to vertical
alignment, except the following descriptive values are used: left, center,
right, or justify, and the results apply to an entire paragraph rather than
to individual words.

The values are essentially the same alignment values that you’d find in any
word processor. The default is left (for Western languages anyway). The
text-align property can only be used with block-level elements, such as
the paragraph <p> element, as illustrated in Figure 7-14.

Figure 7-13:
Use

percentages
to specify a

relative
position, as

shown here.

Figure 7-12:
The

lowercase
“o” works

fine for the
degree

symbol if
you reduce

it to about
70 percent

in the Times
Roman font.

141Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 141

The effects in Figure 7-14 are created by these styles:

<style>

p.right {font-size: 24px; text-align: right;}
p.center {font-size: 24px; text-align: center;}
p.justified {font-size: 24px; text-align: justify;}

</style>

As you see in Figure 7-14, CSS justification isn’t too attractive. The spaces
between the words are simply too wide. This is somewhat improved when
the text lines are wider (the browser window is quite narrow in Figure 7-14).
Nonetheless, the true justification that you see in books and magazines is
quite a bit more subtle and pleasing. True justification involves adjusting the
spacing between letters, not just between words, as IE does it. Also, CSS
offers no hyphenation specification — and hyphenation allows word breaks
that make the lines of text look better as well.

Indenting Text
Similar to horizontal alignment, indentation is frequently used to help readers
quickly identify the start of each paragraph, and thus more easily scan text.
On a word processor, indentation is typically what happens when you press
the Tab key.

Figure 7-14:
These three
paragraphs

illustrate
right, center,
and justified
alignments.

142 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 142

HTML didn’t have an indentation capability, so people resorted to inserting
invisible images and other tricks. (Adding spaces doesn’t work because
HTML strips extra spaces off.)

CSS came to the rescue with its text-indent property. Used with block-level
elements like <p>, you can specify a unit length like 6em or 7px, or a relative
percentage.

Here’s the way you specify indentation for a paragraph, as shown in
Figure 7-15:

p {font-size:24px; text-indent: 2em;}

Texturing
Most Web sites look best with some background textures and graphics. Plain
background colors are rather crude, but a nice, restrained, pale texture
behind your text improves many a Web page. Add some well-placed graphics
and you can bring the drabbest page to life. Textures also help to unify a
page, tying the various zones together.

As with drop-shadows and many other visual effects that you might want
to add to a Web page, your best approach when adding backgrounds is to
design them in a graphics application such as Photoshop.

For example, you can create a background out of a small, repeating texture.
The example in Figure 7-16 tiles a tiny 1'' piece of texture across the entire
background of the browser. It works much the same way that tiling textures

Figure 7-15:
In most

publications,
text is

indented.
HTML has

no pro-
vision for

indentation,
but CSS has

the text-
indent
property.

143Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 143

can be achieved in Windows by right-clicking the desktop, choosing Properties,
clicking the desktop tab, and then selecting one of the textures — such as Soap
Bubbles — from the list. However, your own textures are pretty much guaran-
teed to be superior to those supplied with Windows.

Here’s an example illustrating how to tile a texture file named pebble using
the repeat value of the background property:

<html>
<head>

<style>

body {background: white url(“pebble.jpg”) repeat;}

h2 {background: url(“coin.jpg”) no-repeat left top;
color: blue;
width: 85%;
padding: 30px;
font: bold 48px “Arial Black”;
letter-spacing: -.02em;
word-spacing: -.16em;
line-height:48px;
}

</style>
</head>

<body>
<h2>Coins of the Realm</h2>

<h2>European and Asian Available Now!</h2>

</body>
</html>

You can set backgrounds for the entire page (in the <body> element), or for
individual elements such as Heading 2 (H2) illustrated in the code above. The
ability to add graphics or textures behind any visual element via CSS is quite
useful to Web designers.

Notice that a photo of a coin is included as part of the definition of the H2 ele-
ment, so it appears at the top left of each H2. However, additional properties
such as width and padding define the spacing of the headline, and spacing
properties are used to tighten the headline text.

Even with the spacing adjustments, though, the lettering available via CSS is
relatively crude and one-dimensional. Figure 7-17 illustrates how you can use
drop shadowing with text in a graphics application to give the page a natural
dimensionality: a raised 3D look. Most people would agree that the lettering in
Figure 7-17 is more attractive than the simpler, plainer lettering in Figure 7-16.

144 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 144

Unaltered, the coin photo’s background would create a small square behind
the coin — covering the background texture. So, in a graphics program, I
copied the pebble texture, and then poured it into the small photo’s back-
ground around the coin. This way, the coin blends into the Web page back-
ground. In addition, I added a drop-shadow to the coin photo. One goal when
designing eye-catching graphics is to make the page look less flat. If your
entire design is two-dimensional, with no overlapping elements and no shad-
owing, you’re not exploiting all the possible design tools at your disposal.
Besides the traditional x (horizontal) and y (vertical) axes, think about the z
axis (the third dimension), where objects stack on top of each other and cast
shadows.

When you load a graphic in as your background, as in Figure 7-18, you can
have the image only cover part of the background, and the rest of the back-
ground filled in via a tiled texture. If both textures are identical, as they are in
Figure 7-17, the viewer cannot tell where the image ends and the tiled texture
background begins.

If you do include a background image, you may want to display hyperlinks,
labels, or other elements on top of the image. This can easily be done by
specifying some absolute positioning. (If you just add the text or other ele-
ment in the HTML without specifying positioning, the element appears below
the bottom of the image on the page.)

Figure 7-16:
The

background
was created

in a
graphics
program,

but the text
is pure CSS.

145Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 145

For a good introduction to getting the most out of Photoshop, you might
want to take a look at Photoshop 7 For Dummies by Barbara Obermeier and
Deke McClelland (Wiley Publishing, Inc.).

Here’s the code that produces the results shown in Figure 7-17, with a back-
ground image created in a graphics application and foreground text superim-
posed on the image:

<html>
<head>

<style>

body {background: white url(“pebble.jpg”) repeat;}

</style>
</head>

<body>

<DIV style=”top: 390px; left: 85px; position: absolute; font:
32px;” >THIS TEXT IS ON TOP OF THE IMAGE...</DIV>

</body>
</html>

Figure 7-17:
Special text
effects like
large initial
characters

and drop
shadowing

are more
easily

accom-
plished in a

graphics
program.

146 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 146

This code results in the image you see in Figure 7-18.

When you design a Web page in a graphics application, making adjustments to
that page later is more difficult. For example, to change the text in Figure 7-17,
you cannot merely retype the Heading 2 headline in the HTML code. Instead,
you must go to the graphic’s application and redo part or all of the graphic.

Background textures and images shouldn’t compete visually with the fore-
ground. You want text to remain easily readable, and the overall design of the
page — its logic and structure — shouldn’t be obscured by a fussy or heavy
texture.

Setting Individual Background Properties
In the previous example, you used the background property to specify a
whole set of values, like this:

h2 {background: url(“coin.jpg”) no-repeat left top;

That is similar to the way that the font property can be followed by multiple
values. However, the font properties can be individualized if you wish

Figure 7-18:
Superimpos-
ing elements

on top of a
background

graphic is
easy.

147Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 147

(font-size for example), and you can also individually specify the back-
ground properties if you wish, like this:

body {background-image: url(pebble.jpg);}

This causes the pebble image to tile throughout the background, covering it.
That’s because the tiling value (repeat) is the default. If you don’t want
tiling, use the no-repeat value.

No background inheritance
Background images are not inherited. You wouldn’t want a background to be
inherited by every element in the document. That would ruin the effect with
some kinds of backgrounds (those employing bigger repeating images than the
pebble texture used in this chapter). Larger images (a repeating coin image for
example) would perhaps look OK as a background for a coin dealer’s site — as
long as the coin were lightened up enough so that they didn’t cause readability
problems with the page’s text. However, if that image of a coin were inherited,
it would tile individually for other elements. Doubtless smaller elements like
headlines would cut a line of coins in half, others in three-quarters, and so on.
The page would be a mess of varying tile zones. In fact, no background value is
inherited.

Special repeats
Unless you specify otherwise, a background image repeats both vertically
and horizontally until it fills the window. However, if you want, say, a textured
border down the left side, you can specify a vertical-only repeat, using the
repeat-y value, like this:

<html>
<head>

<style>

body {background-image: url(paper.jpg)
;background-repeat: repeat-y;}

h1 {font-size: 3em;padding-left: 28px}

</style>
</head>

<body>

<h1>Check in to the B & B!</h1>

148 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 148

<img style=”position: absolute; top=100px; left=180px;”
src=wet.jpg>

</body>
</html>

This results in the texture tiling down the side of the browser, as shown in
Figure 7-19:

Background Positioning
The background-position property can be specified with the following values:
left, center, right, top, and bottom. You can combine these values like this:

background-position: top right;

As you probably guessed, you can also use percentages to specify the posi-
tion of a background image. Percentages work a bit strangely because you
provide two percentages, like this:

background-position: 100% 100%;

Figure 7-19:
In this

example,
the tiling is

only
vertical,

creating a
column of

texture
down the
left side.

149Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 149

These x/y coordinates are used for both the image and the parent element. In
other words, 100% 100% means the position is the lower right. So, the lower-
right corner of the image is positioned in the lower right corner of the parent
element. Values of 0% 0% locate the upper left corner of the image in the
upper left corner of the element. 50% 50% centers the image. Any variations
of those percentages put the image anywhere you want within the parent.
Where do you suppose 40% 60% would be located?

Here’s the code:

<html>
<head>

<style>

body {background-image: url(coin.jpg);background-repeat: no-
repeat; background-position: 40% 60%;}

</style>
</head>

<body>

</body>
</html>

This code results in the image you see in Figure 7-20.

Notice that the graphic in Figure 7-20 is not precisely 40 percent from the left
and 60 percent down from the top. That’s because the top-left of the graphic
is not the positioning point. Instead, the point is inside the graphic at its
40/60 coordinate.

Absolute positioning units (inches, px, and so on) can also be used to posi-
tion a background graphic, using the usual x y coordinate system (the first
value is the horizontal position, the second vertical). However, unlike with
percentages, the top-left corner of the image is the positioning point.

If you wish, you can supply negative percentages or absolute units, thereby
moving the image a bit off the element’s box. The following code moves the
coin image 20 pixels in both directions off the edge of the paragraph, as
shown in Figure 7-21:

<style>

p {font-size:32px; background-
image:url(lightcoin.jpg);background-repeat: no-
repeat; background-position: -20px -20px;}

</style>

150 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 150

If you specify the background-attachment property’s fixed value, you can
prevent the background image from scrolling:

background-attachment: fixed;

The value scroll is the default.

Figure 7-21:
You can

supply
negative

coordinates
to move a

background
image off

the parent
element’s

box.

Figure 7-20:
This graphic
is located at

the 40%
60%

coordinate.

151Chapter 7: Styling It Your Way

12_584251 ch07.qxd 2/10/05 11:18 PM Page 151

152 Part II: Looking Good with CSS

12_584251 ch07.qxd 2/10/05 11:18 PM Page 152

Part III
Adding Artistry:

Design and
Composition

with CSS

13_584251 pt03.qxd 2/10/05 11:20 PM Page 153

In this part . . .
You want efficient pages, but efficiency without beauty

isn’t much good. Part III explores the secrets of the
design masters, including burning questions such as,
“How much symmetry is too much?” You also figure out
how to apply the famous Rule of Thirds to add a focal
point without throwing your page off balance. You see
how to manipulate the space between page elements
using margins, borders, and padding. Also covered in this
Part are lists, tables, and some pretty spectacular visual
transition effects.

13_584251 pt03.qxd 2/10/05 11:20 PM Page 154

Chapter 8

Web Design Basics
In This Chapter
� Mastering the secrets of the Web design gurus

� Handling symmetry

� Adding drop caps

� Utilizing the rule of thirds (it’s easier than you think)

As Shania Twain recently observed, creative people are not necessarily
the best judges of their own work. In fact, a disconnect exists between

those who create and those who evaluate creative work.

This chapter explores some “rules” about design that you might consider
applying to your own Web page efforts. Creative people abhor rules because
their job is to make something new, something that, in fact, does not follow
the existing rules. So if you’re as wonderfully inventive as Andy Warhol or
Michelangelo or Jane Austen, by all means ignore the following rules. But if
you’re one of those rare talents, what are you doing reading this book? You
should be at your writing desk or easel.

The rest of us, not so full of genius, are happy to learn how to improve our
designs. And rules, even if we sometimes ignore them, can be useful. Try fol-
lowing the rule first. If it doesn’t work for you, go ahead and violate it.

The idea of this chapter is to encourage your creativity: Just try new things,
move elements around, and otherwise give your ideas a try. When you feel
good about a page, take another dispassionate look at it from the perspective
of these rules. Perhaps you’ll decide to ignore a rule. After all, these are
merely guidelines, and some of the best designs do ignore one or more of the
suggestions in this chapter. But, more likely than not, you might find that
taking a second look at your page design with these rules in mind improves
the look of your page. After all, they became rules because they generally
work pretty well.

14_584251 ch08.qxd 2/10/05 11:20 PM Page 155

Organizing with White Space
Some rules are obvious, and yet you’d be surprised how often they’re ignored.
Effective use of “white space” is essential to most Web pages. White space
need not be actually white: It can be a background color or a texture. It merely
refers to the necessity of including areas on the page that contain no text or
vivid graphics (a pale background graphic is sometimes OK). In other words,
white space is the blank area between images and text.

Your Web sites should avoid alarming people with crowded, text-heavy
pages. Users don’t want to read all that text. They’re not in school: They’re
surfing the Web. They don’t want an assignment from you. They want an invit-
ing Web site that promises them entertaining and useful information.

You can make a page attractive and inviting to the reader in many ways. Your
primary elements on a Web page are headlines, graphics, text blocks, and
white space. Where you position these elements on the page, and their rela-
tive sizes, has a major impact on the page’s visual appeal. Use these building
blocks effectively and you’re more than halfway to creating a document that
people will want to spend some time looking at.

Take a second look
After you compose a page, put the page aside for a few days and then look
at the page with a cold, objective eye (or ask some friends to give you feed-
back). Check to see if your page has balance, contrast, variety, and the other
qualities discussed in this chapter. Also check for some rule violations:
crowding, hidden or floating headlines, tombstones (parallel headlines in
adjacent columns), or widows or orphans (stranded lines or fragments of
text).

Getting on balance
Your primary design goal should be to balance your page. What’s balance?
It means that the page isn’t top- or bottom-heavy, and that the left side bal-
ances the right side. In other words, you divide the page into quarters and
see if the “weight” is roughly evenly proportioned. What’s “weight?” It’s not
simply the amount of darkness (text is gray, headlines are darker, some
graphics are very nearly black, empty space is “white” even if it’s a pale color
or texture). Instead, think about whether your page holds together visually
because you’ve arranged the elements effectively.

An effective arrangement is not completely symmetrical. Few documents look
good when perfectly symmetrically balanced. True, a completely symmetrical

156 Part III: Adding Artistry: Design and Composition with CSS

14_584251 ch08.qxd 2/10/05 11:20 PM Page 156

page is balanced, but it’s too balanced. Too much of a good thing. Symmetry
drains your design of an important quality: variety. The only documents that
value extreme symmetry are wedding invitations, and they are often tasteless
in other ways too. On some wedding invitations, complete symmetry is com-
bined with script fonts: All that’s missing is cheap perfume and they could
win the World Championship of Bad Taste.

So now you’ve got white space, gray blocks of text, black blocks of headlines,
and some in-between graphics, photos, charts, and so on. Of all these compo-
nents, white space (the lighter areas) is usually the most important.

You’re doing a design, a visual composition. You’ve probably seen paintings by
Mondrian. He arranged squares and rectangles into attractive and balanced
compositions. He didn’t balance his works of art by putting four identical
squares in the four quadrants of a page, as shown in Figure 8-1. That’s bal-
anced, all right, but it’s boringly symmetrical. You face a similar task: avoid
symmetry, but achieve a balanced composition.

Another problem with Figure 8-1 is that there’s probably too much text (rep-
resented by the gray blocks). Adding some white space would relieve the too-
gray look.

Figure 8-2 illustrates the opposite extreme: excessive asymmetry. The design
in Figure 8-2 manages to avoid the tedium of symmetry, but is not balanced.
Also, the two identical headline-text areas are badly positioned. Their posi-
tions look haphazard.

Figure 8-1:
Symmetry is

balanced,
but boring.

157Chapter 8: Web Design Basics

14_584251 ch08.qxd 2/10/05 11:20 PM Page 157

Adding a photo (the darker gray square in the lower left in Figure 8-3) and
using text blocks and headlines of varying sizes helps give the page variety.

Figure 8-3:
This is

closer to the
ideal: The
page has

variety but
also

balance.

Figure 8-2:
This design

has too
much white

space on
the bottom,
so the page

is top-
heavy.

158 Part III: Adding Artistry: Design and Composition with CSS

14_584251 ch08.qxd 2/10/05 11:20 PM Page 158

Emphasizing an Object with Silhouetting
A useful technique called silhouetting helps break up symmetry by removing
most or all of the background of a photo or drawing, and then placing it off-
center on the background color or space. When you clean away the existing
background, the image’s foreground becomes more prominent. It provides an
extra dimension, somewhat like adding shadows. The detail on the edge of
the foreground is exposed and seems to thrust out of the page toward the
viewer.

You can bring an object like the watch in Figure 8-4 to life by first removing
the background, erasing it by using tools in a graphics application. Then it
looks like Figure 8-5.

By tilting the watch so it’s not perfectly vertical and placing it on an offset
background, you give it additional prominence, as shown in Figure 8-6.

A primary difference between Figure 8-4 and 8-6 is that in 8-4, the watch is
framed by a background. In Figure 8-6, the background doesn’t surround the
watch, so the watch appears to be placed on top of the screen, not sunk into
a background. Figure 8-6 adds motion, dynamism, and dimension to the rela-
tively static, sunken, flat image displayed in Figure 8-4.

Figure 8-5:
Often,

erasing the
background

gives the
foreground

object
additional

clarity and
realism.

Figure 8-4:
As shot, this
watch sinks

too much
into the

woodgrain
background.

159Chapter 8: Web Design Basics

14_584251 ch08.qxd 2/10/05 11:20 PM Page 159

Adding Drop Caps
You can apply this same offsetting principle I discussed in the last section to
text in various ways. One way is to add an icon — like this watch graphic per-
haps — to the side of each of your paragraphs. Flow the paragraphs around
the image, or use an enlarged overlapping capital letter at the start of a para-
graph. This technique, called a drop cap, has been used for centuries as a
way of adding variety to pages of text.

Figure 8-7 was created using the following technique. Define a class that spec-
ifies a font that’s larger than its parent element, that floats to the left of its
parent, and, if you wish, give it a different color as well. (In this code, I made
the drop cap bold and 400 percent larger than the surrounding paragraph
text.) Then use a element to add the drop cap to the paragraph:

<html>
<head>

<style>

p {font-size:32px;}

.dropcap {font:bold 400%; float:left; color:GreenYellow;}

</style>
</head>

<body>

Figure 8-6:
This partial

silhouetting
pulls the

watch right
out of the

screen and
pulls the

reader’s eye
right into

your page.

160 Part III: Adding Artistry: Design and Composition with CSS

14_584251 ch08.qxd 2/10/05 11:20 PM Page 160

<p>Notice that the graphic in
Figure 7-21 is not precisely 40% over from the
left and 60% down from the top. That’s because the
top-left of the graphic is not the positioning
point. Instead, the point is inside the graphic at
its 40/60 coordinate. Absolute positioning units
(inches, px, and so on) can also be used to
position a background graphic, using the usual

</p>

</body>
</html>

An easier way to add a drop cap to every paragraph is to use a pseudo-element.
Pseudo-elements are explored further in Chapter 15. Here’s a preview, as
shown in Figure 8-8:

<html>
<head>

<style>
p {font-size:24px;}
p:first-letter {font:bold 300%; float:left;

color:GreenYellow;}
</style>

</head>

Figure 8-7:
Drop-caps
add variety
by violating

the space of
the parent

paragraph.

161Chapter 8: Web Design Basics

14_584251 ch08.qxd 2/10/05 11:20 PM Page 161

<body>

<p>
Notice that the graphic in Figure 7-21 is not precisely 40%

over from the left and 60% down from the top.
That’s because the top-left of the graphic is not
the positioning point. Instead, the point is
inside the graphic at its 40/60 coordinate.
Absolute positioning units (inches, px, and so on)
can also be used to position a background graphic,
using the usual

</p>

<p>
You can apply this same offsetting principle to text in

various ways. One way is to add an icon--like this
watch graphic perhaps--to the side of each of your
paragraphs. Flow the paragraphs around the image.
Or use an overlapping capital letter at the start
of a paragraph. This technique, called a drop cap,
has been used for centuries as a way of adding
variety to pages of text.

</p>

</body>
</html>

Figure 8-8:
If you want
a drop-cap
at the start

of every
paragraph,

try using the
first-
letter
pseudo-
element.

162 Part III: Adding Artistry: Design and Composition with CSS

14_584251 ch08.qxd 2/10/05 11:20 PM Page 162

Trapping White Space
Sometimes white space can look bad. If you’ve surrounded a white area with
text or graphics, you’ve managed to create what is called trapped white
space. This kind of trapped space looks bad and can make your page look
blotchy and jumbled as shown in Figure 8-9:

The problem in Figure 8-9 is the distance between the H3 (the thin horizontal
black line) on the right side and the text it describes. Headlines, captions,
and other descriptive items should almost always be right next to the photo
or paragraph they describe. Figure 8-10 shows how adjusting the items on the
page can remove the trapped white space and put the headlines next to the
text they describe.

Figure 8-10:
When you

remove the
trapped

white
space, you

improve the
design

(compare
this to

Figure 8-9).

Figure 8-9:
Although

this design
is varied

and
balanced, it

contains
trapped

white
space.

163Chapter 8: Web Design Basics

14_584251 ch08.qxd 2/10/05 11:20 PM Page 163

Following the Rule of Thirds
Like any good painting or photograph, your Web pages benefit from having a
focal point — an object that represents the main topic or most prominent
visual element. This can be a photo, a sketch, or whatever is the first thing
the viewer notices. It stands out from the rest of the page. Perhaps it’s as
simple as an unusual shape — something that doesn’t match the other
shapes on the page, as in Figure 8-11:

Figure 8-11 is an improvement over Figure 8-3, but invoking the rule of thirds
strengthens the composition even more. Draw imaginary lines dividing your
Web page into thirds both vertically and horizontally, as shown in Figure 8-12.
Where the lines intersect is the best location for your focal point.

Figure 8-12:
Divide your
Web page

into nine
imaginary

zones.

Figure 8-11:
The rest of

this page is
composed of

rectangles,
but this new

shape
provides a

focus.

164 Part III: Adding Artistry: Design and Composition with CSS

14_584251 ch08.qxd 2/10/05 11:21 PM Page 164

The four hot spots
A Web page contains four “hot spots.” These locations are where you should
try to center your focal point. See if you don’t think that Figure 8-13 is an
improvement over Figure 8-11, now that the dancer has been moved to a hot
spot:

Try moving the focal point to one of the other hot spots; you’ll see that it
looks good in those locations as well. Remember, you’ve got four hot spots
to experiment with. In Figure 8-14, the dancer is positioned in the upper-left
hot spot. Also notice that the dancer has been reversed from her position in
Figure 8-13, so she dances into the page in Figure 8-14. If you have motion
(an arrow, a dancer, anything that points or moves), ensure that the motion
moves into, not out of, your page. The focal point is the first thing the viewer
sees, and it should lead the eye into the page.

Figure 8-14:
This dancer
looks good

in this other
hot spot
as well.

Figure 8-13:
The focal

point is now
on a hot

spot in the
page.

165Chapter 8: Web Design Basics

14_584251 ch08.qxd 2/10/05 11:21 PM Page 165

However, the design in Figure 8-15 isn’t as successful, even though the dancer
is positioned on the lower-left hot spot. Why?

Recall the positioning of the watch in Figures 8-4 and 8-6. One of the rules of
good composition is that you should violate white space, moving a focal
point so that it’s not framed or sunk into its background, but instead pokes
into the surrounding white space. In Figures 8-13 and 8-14, the dancer leaps
out of the background into the white space. That’s the better choice.

Of all these page designs, Figure 8-13 is probably the best. It’s the most bal-
anced because the dancer counteracts the weight of the large headline at the
top of the page. But the final choice is, as always, up to you.

Background image positioning
The same concept of hot spots also applies to background images. Most
people would center the background image shown in Figure 8-16, thinking: Why
not? It’s balanced if it’s in the middle, right? True, but always remember that
you want balance combined with interest, and unity combined with variety.

When you center your background on a hot spot, you maintain balance
(hot spots do precisely that) while adding interest to your composition.

In Figure 8-17, the background radiates from the hot spot.

As I’ve often commented in this book, there’s really no substitute for using a
graphics application when designing a Web page. CSS is great for many
things, but you simply cannot make it do everything. The words Deals on
Wheels in Figure 8-18 are not composed of a special metallic font; the 3D

Figure 8-15:
The focal

point is
positioned

in one of the
hot spots,

but the
surrounding

dark area
swallows

the dancer
and frames
her as well.

166 Part III: Adding Artistry: Design and Composition with CSS

14_584251 ch08.qxd 2/10/05 11:21 PM Page 166

metallic effect was added in a graphics program to an ordinary, flat, black
typeface. CSS can manipulate text in many ways, for example, but it cannot
add that metallic effect. When you need to take text or graphics to the next
level, move to a dedicated graphics application like Photoshop that has many
such capabilities.

Figure 8-17:
This is
better

composition:
centering
the wheel

on the
upper-left

hot spot.

Figure 8-16:
Most

amateur
Web

designers
drop a

background
graphic

smack in the
middle of

their page
like this.

167Chapter 8: Web Design Basics

14_584251 ch08.qxd 2/10/05 11:21 PM Page 167

Keeping It Appropriate
I conclude this chapter with a cautionary note for those designers who, now
and then, neglect to think. I’m not talking about you, of course. I’m talking
about some friend of yours that you might lend this book to.

Please do ensure that the symbols, shapes, clip art, and other focus elements
you add make sense for your Web site’s content. The clip-art silhouette added
to Figure 8-11 is great for a dance studio’s Web site. It’s not so great for a site
sponsored by Concerned Mothers Against Filth on TV.

In the latter Web site, you expect sober, down-to-earth graphics. Anything but
a leaping dancer. The dancing woman just doesn’t symbolize the CMAFTV
philosophy very well, does it? That dancer would be out of place, too, in the
Web sites of most churches and government agencies.

I’d like to recommend some specific sites to illustrate the principles discussed
in this chapter. However, Web sites change their content so often that any site
I point out will likely have changed by the time you read this book. However,
you can do a little surfing on your own and find Web pages that are visually
compelling. (Or just look at magazine layouts or ads.) You’re likely to find at
least some of this chapter’s principles illustrated in any good Web page.

Figure 8-18:
Combine

some text
with an

offset
background

and you’re
on your way

to a well-
designed

Web page.

168 Part III: Adding Artistry: Design and Composition with CSS

14_584251 ch08.qxd 2/10/05 11:21 PM Page 168

Chapter 9

Spacing Out with Boxes
In This Chapter
� Understanding the CSS box

� Using margins of victory

� Padding elements

� Positioning elements

� Adding lines

To gain a command of precision positioning using CSS, you must under-
stand the concept of the box. After you understand that, you can get a

good feel for the ways that elements are positioned within the browser
window. In this chapter, you find out how to use boxes and padding to posi-
tion elements on your Web pages.

Getting a Grip on Boxes
Each visual element in a CSS has an imaginary box around it that causes it to
perhaps take up more space on the page than its contents (the text or graph-
ics of the element) actually use. In other words, you can add optional padding,
border, and margins to an element that expand the area that the element uses.

The box is a virtual diagram of the content (text or graphics), plus any
padding, border, or margin added to that content. Figure 9-1 illustrates
how padding, borders, and margins radiate out from the central contents.

CSS defines two main types of elements: block-level (such as paragraphs) and
inline elements (such as). Block-level elements are positioned in
ways that you can fairly quickly visualize. Inline elements can be less intu-
itive. (A containing block is simply a block-level element that has one or more
child elements that it contains. The concept of containing block is used when
discussing CSS inheritance features.)

15_584251 ch09.qxd 2/10/05 11:27 PM Page 169

170 Part III: Adding Artistry: Design and Composition with CSS

To understand how padding, border, and margins interact, think of the job
of hanging paintings in an art gallery. Each painting consists of the actual
canvas area, which is the content in this CSS scenario. Next you can add an
optional matte that separates the outer edge of the canvas from the frame.
A matte is equivalent to the padding in a CSS box. The frame around the
painting is equivalent to the CSS border. Finally, how far apart you hang the
paintings on the wall is equivalent to CSS margins.

The width and height of the content area depends on whether you’ve speci-
fied a value for the width or height properties, whether the content is a
table (or other specialized element), whether the content contains other
boxes or text, and so on.

The width of an element’s box is determined by adding the content width
to any left and right margins, borders, or padding. Likewise, the height of
an element’s box is the sum of the content height, plus any top and bottom
margins, borders, and padding.

The background (visible) styles of the zones of a box are specified using
these properties:

� Content area: The element’s background property

� Padding area: The element’s background property

� Border area: The element’s border properties

� Margin area: No background, margins are always transparent

The padding, border, and margins can each be specified with different
values for their top, bottom, left, and right sides. Some of these properties
are padding-top, border-bottom-width, and margin-left.

Margin

The border

Padding

Content

Figure 9-1:
An

element’s
box is

composed
of its

contents,
plus

optional
padding,

border, and
margins.

15_584251 ch09.qxd 2/10/05 11:27 PM Page 170

171Chapter 9: Spacing Out with Boxes

You can use these properties to create various special effects within boxes.
However, you could specify only a bottom border, for instance, and draw that
border in quite a few different ways. In fact, the border-bottom property can
specify a series of values that apply only to the bottom line of the four possi-
ble border lines.

Adding a border
If you want a paragraph to be underlined with a one-inch thick blue dotted
line, use this code to get the result shown in Figure 9-2:

<p style=”border-bottom: 12px blue dotted”>
You can apply this same offsetting principle to text in

various ways.
</p>

<p>
This is the next paragraph.
</p>

Adding padding
Now add padding to the previous example to see how space is added
between the bottom of the text (the bottom of the content area) and the
border. The content in Figure 9-3 is padded:

<p style=”border-bottom: 12px blue dotted; padding-
bottom=.5in;”>

You can apply this same offsetting principle to text in
various ways.

</p>

Figure 9-2:
A border-

bottom
property
specifies
blue, 12-

pixel dots
for the
bottom

border line
only.

15_584251 ch09.qxd 2/10/05 11:27 PM Page 171

172 Part III: Adding Artistry: Design and Composition with CSS

Adding a margin
Finally, add a margin that separates the paragraph element from a nearby ele-
ment; in this case, the next paragraph below, as shown in Figure 9-4:

<p style=”border-bottom: 12px blue dotted; padding-
bottom=.5in;margin-bottom=1in;”>

In each of the previous three figures, the box around the first paragraph has
grown in height, although its width did not change. Remember that the box
height is the combination of content, border, padding, and margin height.

Figure 9-4:
Add space

between the
first

paragraph
and the

following
paragraph

by adjusting
the

margin-
bottom
property.

Figure 9-3:
Here space

is padded
between the
paragraph’s
content and

border. A
border is

like a frame,
although a

CSS border
isn’t

required to
have four

sides.

15_584251 ch09.qxd 2/10/05 11:27 PM Page 172

Vertical Positioning
If you specify no positioning, your Web page elements flow into the page
using default flow: The browser simply stacks the elements along the left side
of the screen in the order that you locate them in the HTML code, as shown
in Figure 9-5:

This default positioning takes effect unless you specifically use positioning or
floating to violate the normal stacking behavior.

Also by default, the height of an element is, at the most basic level, deter-
mined by the element’s content. For example, the image in Figure 9-6 is this
size in the browser because it is this size in reality. That’s the size that the
lure.jpg graphics file defines for this image.

Images can be resized in graphics applications, but you can also resize them
via CSS using specific width and height properties. The result is shown in
Figure 9-7:

<img style=”border: thin solid; width=380px; height=240px;”
src=”lure.jpg”;>

Figure 9-5:
Default

positioning
enables the

browser
to decide
how your
elements

should stack
up, and

the results
can be as

unappealing
as this.

173Chapter 9: Spacing Out with Boxes

15_584251 ch09.qxd 2/10/05 11:27 PM Page 173

174 Part III: Adding Artistry: Design and Composition with CSS

Obviously, you’ve affected the height of this element by specifying a height
property. This, in turn, affects the default vertical positioning of any items
below this element. (You can affect the positioning of these lower items by
using positioning properties for them.)

Similarly, you can affect the height of a paragraph of text by making the para-
graph narrower, requiring that the paragraph grow in height to display all the
text. Specifying that a paragraph should be only 35 percent (of the browser
width) can cause the paragraph to flow off the bottom of the browser and
force the browser to add a scroll bar, as shown in Figure 9-8:

Figure 9-7:
Specify a

height value
larger than

this
graphic’s

default
height and
you cause
elements

beneath it to
move down

on your
page.

Figure 9-6:
If you don’t

specify
otherwise,
the image
is as high
and wide
as its file

specifica-
tion says it
should be.

15_584251 ch09.qxd 2/10/05 11:27 PM Page 174

175Chapter 9: Spacing Out with Boxes

Here’s the code that produces Figure 9-8:

<body>

<p style=”width: 35%;”>
If you allow your Web page to simply be calculated by the

browser--the default simply stacks the elements
along the left side of the screen in the order
that you locate them in the HTML code. This normal
positioning takes effect unless you specifically
use positioning or floating to violate the normal
stacking behavior.

</p>

</body>

To understand the box height of an element, you may need to consider a total
of seven properties that can be involved:

� height (the actual content of the element)

� padding-top

� padding-bottom

� border-top

� border-bottom

� margin-top

� margin-bottom

The box’s bottom determines where the top of the box surrounding the next
element just below can be positioned (in the default normal flow positioning).

Figure 9-8:
When you

adjust a
paragraph’s
height, you

can force
elements

beneath it
down, even

out of the
window at

the bottom.

15_584251 ch09.qxd 2/10/05 11:27 PM Page 175

An element’s height and the top and bottom margin properties can be set to
auto. If you want to specify the padding property (to add space between the
content and any border), or the border width itself, you must specify those
with actual units of measurement, or percentages, but not auto. However,
auto, for margin tops and bottoms, defaults to zero.

Horizontal Positioning
Western browsers read from left to right, so when elements are positioned
horizontally, they start on the left side. But you must always remember that
its box can be larger than the element’s contents.

Consider this example that displays a background color to illustrate the
width property of this paragraph element. The result is shown in Figure 9-9:

<style>

p {width: 100px;background:tan;}

</style>

</head>

<body>

<p>This paragraph is only 100px wide.</p>

</body>

Figure 9-9:
The width

here is
simply

specified
by the

paragraph
style’s
width

property.

176 Part III: Adding Artistry: Design and Composition with CSS

15_584251 ch09.qxd 2/10/05 11:27 PM Page 176

177Chapter 9: Spacing Out with Boxes

But if you add padding and a margin to the paragraph, you increase the para-
graph’s box’s width:

<style>

p {width: 100px; padding: 30px; margin: 40px;
background:tan;}

</style>

</head>

<body>

<p>This paragraph is only 100px wide.</p>

</body>

Notice that compared to Figure 9-9, the paragraph element shown in Figure
9-10 has a wider background color (because padding has been specified) and
is also positioned horizontally further away from the left side of the browser
(because a margin has been specified).

Web page designers often mistakenly believe that when they provide a value
to the width property of an element, they’re specifying the distance between
its left and right border lines. Or worse, some think their width value speci-
fies the entire visible distance between the element and the next element. In
fact, padding, border widths, and margins must all be taken into account.

Figure 9-10:
Here, the

paragraph
has a larger
background
color block

and is
indented

from the left
of the

browser
window.

15_584251 ch09.qxd 2/10/05 11:27 PM Page 177

178 Part III: Adding Artistry: Design and Composition with CSS

This applies as well to the height property, where you must take into
account padding, borders, and margins too.

Some designers temporarily add a background color to their elements to
enable them to more easily visualize the boxes (see Figure 9-9). But always
remember that a background does not include any margins, as you can see in
Figure 9-10. So simply adding a background doesn’t always make the virtual
box visible.

Positioning also involves concepts such as the auto value and floating. These
and related issues are covered in upcoming chapters.

Breaking Up Text with Horizontal Lines
For some reason, horizontal rules aren’t used as much in books and other
media as they once were. It’s a shame, in my view, because they’re both
attractive and functional.

Horizontal lines are often a quite effective way of separating different logical
areas of your Web page. They organize things visually for the reader in a way
that’s both unobtrusive and efficient. They can also improve the aesthetic
appearance by adding variety.

Readers appreciate it if you somehow visually break up a page that contains
a large amount of text. Headlines and subheads help to do this, as do borders
and background colors or textures. But one of the best ways to indicate that
a group of paragraphs belongs together logically is to simply insert horizon-
tal lines as needed.

Probably the easiest way to employ horizontal lines is to use the <hr> (hori-
zontal rule) element, like this:

<style>

hr {
margin-top:5px;
width: 80%;
height: 1px;
color: blue;
}

</style>
</head>
<body>

15_584251 ch09.qxd 2/10/05 11:27 PM Page 178

179Chapter 9: Spacing Out with Boxes

Horizontal lines are often quite useful as a way of
separating different logical areas of your Web
page. They can also look good--adding variety.
Readers appreciate it if you somehow zone off a
page with a fair amount of text. Headlines and
subheads help with this, as do borders and
background colors or textures. But one of the best
ways to indicate that a group of paragraphs
belongs together logically is to simply insert
horizontal lines as needed.

<hr>

Now, on a completely different subject, blah blah lines are
often quite useful as a way of separating
different logical areas of your Web page. They can
also look good--adding variety.

Some CSS experts suggest using the top or bottom border properties of ele-
ments to provide horizontal rules, but I’ve never quite understood why. These
experts insist that you should always try to separate content, the HTML, from
presentation, the CSS, but that seems extreme to me. After all, such elements
as <i> for italics are surely easy to embed within body text, rather than set-
ting up a CSS rule for the same effect. The experts further argue: “What if you
decided to change italics to some other method of emphasis?” My answer to
that is threefold: You should always use only italics for emphasis. But if you
are ever faced with going through and changing each <i> tag to a different
element, how hard is it to use a search and replace utility to globally make the
change throughout your code? It only takes a few seconds, so what’s the big
deal? And lastly, if you don’t like search and replace, you could alternatively
redefine the <i> element by creating a new CSS rule with i as the selector,
right? Anyway the <hr> element works just fine for adding lines. If you provide
a percentage width for it, as in the preceding example, the line is the right size
in relation to the parent element. Generally, limiting a dividing line to around
80 percent of the parent is best, as shown in Figure 9-11.

You can use most of the CSS properties you’d expect with <hr>, including, in
the example above, a little bit of top-margin to space the line nicely below
the first paragraph.

Although a plain, black, or gray line usually suffices, if you wish, you can fiddle
around with the shape and size of your dividing line, like this, where the mar-
gins, height, width, and color are all changed from the previous example:

hr {

margin-top: 3px;
margin-bottom: 5px;
height: 14px;
width: 60%;
background-color: mediumspringgreen;
}

15_584251 ch09.qxd 2/10/05 11:27 PM Page 179

For a list of all the colors available in Internet Explorer, including such
favorites as LavenderBlush and WhiteSmoke, see the Cheat Sheet inside this
book’s front cover.

If you are really adventurous, you can experiment with the line’s back
ground-image property and transform your line into a graphic. However,
if you want to divide your paragraph groups with images, I suggest two
things:

� Just use the element to employ graphics rather than twisting the
horizontal rule element into something it was never intended to be.

� Consider carefully the visual effect of using graphics instead of simple
lines to separate your paragraphs.

If you must try it, here’s the code. Figure 9-12 illustrates what happens when
enthusiasm triumphs over common sense:

<style>

p {font: 24pt;}

hr {
background-image: url(globe.jpg);
background-repeat: no-repeat;
border: none;
width: 400px;
height: 800px;
}
</style>

Figure 9-11:
Use

horizontal
rules to

separate
groups of

paragraphs.

180 Part III: Adding Artistry: Design and Composition with CSS

15_584251 ch09.qxd 2/10/05 11:27 PM Page 180

The trick used in Figure 9-12 is more likely to confuse viewers rather than
guiding them. Graphics, generally speaking, just aren’t a great a way of orga-
nizing text zones. Even subtle graphics, like a small, tasteful border of dia-
monds or dots, are usually just a distraction to the reader and are best
avoided.

Figure 9-12:
Using

images as a
way of

separating
paragraphs

— though
possible —
is often not
very wise.

181Chapter 9: Spacing Out with Boxes

15_584251 ch09.qxd 2/10/05 11:27 PM Page 181

182 Part III: Adding Artistry: Design and Composition with CSS

15_584251 ch09.qxd 2/10/05 11:27 PM Page 182

Chapter 10

Organizing Your Web
Pages Visually

In This Chapter
� Creating effective borders

� Floating elements

� Using the clear property with floats

This chapter focuses on two ways to visually organize a Web page: adding
borders around elements, and floating elements on the page.

Borders can be a good way to help your viewers understand the layout of
your page, its various zones, and their purposes. Paragraphs are a way of
dividing text into logical units — the reader knows that a paragraph division
indicates a new idea, or further expansion of the idea in the previous
paragraph.

Similarly, paragraphs themselves can be grouped into larger logical units. For
example, a Web page may be subdivided into a section describing your com-
pany, another section containing links to various locations in the Web site,
and yet another section advertising your latest product.

Each of these sections might contain several paragraphs, but you group them
together because they belong together logically.

Paragraphs can be grouped in many ways. Headlines or sub-heads, for exam-
ple, group the paragraphs that follow them. Horizontal lines (<hr>) can be
used to effectively divide groups of paragraphs. Or you can resort to less-
elegant visual zoning by coloring the background of the paragraph groups
using different colors (this last approach isn’t recommended except for
Web sites designed for kids).

Finally, you see how to exploit the useful float property to allow elements
to flow around each other, such as a paragraph of text that seems to enclose
a photo.

16_584251 ch10.qxd 2/10/05 11:23 PM Page 183

Managing Borders
If you choose to surround elements of a Web page with borders, you’re in
luck: CSS offers quite a variety of ways to employ borders, and it allows you
to add borders to any element you want to.

A border is a frame, just a line usually, that surrounds an element. However,
you can selectively leave out any of the four lines of a border or define them
each differently using the border-top, border-right, border-bottom, and
border-left properties individually.

A border surrounds the content, and, optionally, any padding that you’ve
specified for an element. Any optional margin specified is not surrounded by
the border, but instead separates this element from surrounding elements.

Borders can be given values indicating how you want them to look: color,
thickness, and style (dotted, inset and so on). The thickness or width of the
border can be specified in the usual CSS variety of ways (using the units of
measurement described in detail in Chapter 6, such as px, in, or em), includ-
ing the default medium, which is two or three pixels wide. The default color
of a border is the text color of the element, or if an element has no text (an
image, for example), the text color of the element’s parent is inherited.

If people want to know why you use CSS, you can tell them that one of many
reasons is the border property. It can be applied to any element, and, like
many CSS features, the border property is flexible, attractive, sensible, effi-
cient, and useful. Without CSS, you’d have to resort to really nasty solutions
like torturing the table element into serving as a frame.

Specifying a simple border
You’ll find all kinds of borders at your disposal when using CSS. The simplest
border specification just uses the border property followed by a series of
three values (width, style, and color) separated by spaces, like these:

<html>
<head>

<style>

body {font-size:24px;}
p {border: thick solid green;}

</style>
</head>

<body>

184 Part III: Adding Artistry: Design and Composition with CSS

16_584251 ch10.qxd 2/10/05 11:23 PM Page 184

<p>Absolute positioning units (inches, px, and so on) can
also be used to position a background graphic,
using the usual x y coordinate system.

</p>

<p style=”border: 10px groove gray”>Absolute positioning
units (inches, px, and so on) can also be used to
position a background graphic, using the usual x y
coordinate system.

</p>

<p style=”border: .4in ridge mintcream”>Absolute positioning
units (inches, px, and so on) can also be used to
position a background graphic, using the usual x y
coordinate system.

</p>

<p style=”border: 6px double blue”>Absolute positioning units
(inches, px, and so on) can also be used to
position a background graphic, using the usual x y
coordinate system.

</p>

</body>
</html>

Save this code to a file with an .htm extension in Windows Explorer, and then
double-click that .htm file. Internet Explorer opens and loads the page you
see in Figure 10-1:

Notice in the preceding code that you follow the border property with values
for width, style, and color, in this way for an inline CSS style:

style=”border: 6px double blue”

Or like this for a general CSS style:

p {border: 6px double blue;}

If you don’t specify a style, you get no border. The default style is none. So
don’t assume that if you specify other border-related properties like
border-width or color, you’ll end up with a border. The border-style
property is required.

The difference between external, embedded, and inline CSS styles is
described in the section titled “Visualizing Specificity” in Chapter 2.

185Chapter 10: Organizing Your Web Pages Visually

16_584251 ch10.qxd 2/10/05 11:23 PM Page 185

Choosing from lotsa border styles
You can specify eight different border styles: solid, dotted, dashed,
double, groove, ridge, inset, or outset. Figure 10-2 illustrates each style,
although some of them are a bit wider than you’d normally want to use. I’m
specifying that each border here be a generous eight pixels for illustrative
purposes so you can easily see them in this book. Generally speaking, the
only styles you should usually make thick are the frame-like designs: groove,
ridge, inset, and outset. These are designed to display shading (by vary-
ing the lightness of the lines), so you want the lines large enough so the
viewer can actually see the shading. Here’s the code:

<p style=”border: 8px solid”>This is the SOLID border style.
No color is specified, so it defaults to black.

</p>
<p style=”border: 8px dotted”>This is the DOTTED border

style.
</p>

Figure 10:1:
You can

create all
kinds of
borders.

These styles
are, from

top to
bottom,
solid,
groove,

ridge, and
double.

186 Part III: Adding Artistry: Design and Composition with CSS

16_584251 ch10.qxd 2/10/05 11:23 PM Page 186

<p style=”border: 8px dashed”>This is the DASHED border
style.

</p>
<p style=”border: 8px double”>This is the DOUBLE border

style.
</p>
<p style=”border: 8px groove”>This is the GROOVE border

style.
</p>
<p style=”border: 8px ridge”>This is the RIDGE border style.
</p>
<p style=”border: 8px inset”>This is the INSET border style.
</p>
<p style=”border: 8px outset”>This is the OUTSET border

style.
</p>

Figure 10-2 illustrates the eight border styles:

Other browsers interpret the border styles slightly differently. Figure 10-3
shows how Mozilla Firefox displays the styles. For example, Firefox thinks
“dotted” means small dashes. Firefox also employs black, rather than the
more subtle gray, for the shadows in the bottom four frame-like borders, as
shown in Figure 10-3:

Figure 10-2:
Here are the

border
styles you

can specify.
This is how

Internet
Explorer

interprets
these

borders.

187Chapter 10: Organizing Your Web Pages Visually

16_584251 ch10.qxd 2/10/05 11:23 PM Page 187

CSS3 is developing a border-radius property that allows you to further
refine the appearance of borders by rounding the corners; a border-image
property that you could use with fancy graphics to build ornate frames; and
some associated properties to rotate and otherwise transform ornate bor-
ders. Progress marches on.

Mixing and matching styles
If you like, you can use only a one-sided border (or two- or three-sided). You
can even to mix and match styles so that, for example, one side is dotted and
the rest are double lines. Why you would ever want to do this is another
issue, but here’s an example of a graphic bordered on the top and right with
the dotted style, the bottom with no border, and the left side the dashed
style:

Figure 10-3:
The Mozilla

Firefox
browser
displays

border
styles

slightly
differently

from
Internet

Explorer, but
it’s all good.

188 Part III: Adding Artistry: Design and Composition with CSS

16_584251 ch10.qxd 2/10/05 11:23 PM Page 188

<html>
<head>

<style>

IMG {border-style: dotted dotted none dashed;}

</style>
</head>

<body>

</body>
</html>

This code results in the odd, mixed-border look in Figure 10-4:

In CSS styles, when the four sides of a border, margin, or other property are
specified with a list of values, the order is always top, right, bottom, left. You
can remember this value order because it’s simply clockwise, starting from
midnight at the top. Thus, dotted dotted none dashed translates as a
dotted top and right side, no border on the bottom, and a dashed border line
on the left side, as shown in Figure 10-4.

Specifying border width
Border width can be specified using the usual CSS set of units (px, in, em,
and so on), or by using the descriptive values thin, medium, or thick.
The following code using the thick value produces the result shown in
Figure 10-5:

Figure 10-4:
Mix and

match
borders, or

you can
even use

none to
remove a

border. This
image has
no bottom

border.

189Chapter 10: Organizing Your Web Pages Visually

16_584251 ch10.qxd 2/10/05 11:23 PM Page 189

<style>

P {background-color: lightsalmon; padding: 12px;
border-style: double; border-width: thick;}

</style>

In addition to altering the border style, you can also vary the size of each
individual border (as you can with margins), although this too is useful for
few Web page designs. If you wish, use these properties to display a multi-
thick border: border-top-width, border-right-width, border-bottom-
width, and border-left-width. Figure 10-5 illustrates the thick size.

Coloring a border
Border color is specified with the border-color property. No surprise
there. Just use any of the CSS color values described in detail in Chapter 6.
Remember that if you omit this property, the border takes on the color of the
surrounding text, or the text of the parent element, if the local element has no
color (such as an image element). The default border color is, therefore, usu-
ally black.

If you want to play around with some lighting effects to give your borders a
dimensional quality, you can specify four different colors, one for each side of
the border, like this:

<style>

P {padding-left: 6px; padding-right: 4px; padding-top: 6px;
border-style: double; border-width: thick;

border-color: lightskyblue lightskyblue darkslateblue
darkslateblue;}

</style>

Figure 10-5:
This border
is rendered

in the
thick
border
width.

190 Part III: Adding Artistry: Design and Composition with CSS

16_584251 ch10.qxd 2/10/05 11:23 PM Page 190

When you assign dark colors to the right and bottom sides, you produce the
“outset” protruding lighting effect, even though you’re not using the outset
style for your border property. Figure 10-6 illustrates one way to do this:

Although you can add borders to inline elements, avoid that trick. It can look
pretty messy and overdone. Borders aren’t meant for inline elements.

Floating About
CSS permits any element to float, just as it extends many other properties to
all elements that were in traditional HTML limited to only a few. Designers
were able to flow (or wrap) text around an image or table by using the
align=”right” code in HTML, but now you can pretty much float anything
you wish. Here again, CSS gives designers far greater freedom to design than
was previously possible.

Figure 10-7 illustrates how the following code looks, without using the float
property:

<body>

<h2><img src=”woofie.jpg” style=” width: 200px; height:
150px; margin: 0 3% 0;”>Illustrating how a
gradient effect works</h2>

Figure 10-6:
By

specifying
different

values for
different

sides of this
border, you

get a 3D
lighting
effect,

similar to
the outset
border style.

191Chapter 10: Organizing Your Web Pages Visually

16_584251 ch10.qxd 2/10/05 11:23 PM Page 191

<p>You can apply gradients to various images, as you wish.
Imagine the nice fade-in effect that you can
generate if you add some scripting to slowly
adjust the opacity value while the user is
watching.</p>

</body>

But when you add the float property, text and other elements wrap around
the floated element. In this next example, the image is floated within both the
parent headline and the text that follows it, as shown in Figure 10-8:

<body>

<h2><img src=”woofie.jpg” style=”float: left; width: 200px;
height: 150px; margin: 0 3% 0;”>Illustrating how a gradient

effect works</h2>

<p>You can apply gradients to various images, as you wish.
Imagine the nice fade-in effect that you can
generate if you add some scripting to slowly
adjust the opacity value while the user is
watching.</p>

</body>

Notice in the above code that the image is an inline element, nested inside
the H2 element. When you nest elements like this, you help ensure that most
browsers align the top margin of the headline text and the image.

Figure 10-7:
Without the

float
property,

many Web
page

designs are
almost

guaranteed
to include
unneces-

sary white
space, like

this.

192 Part III: Adding Artistry: Design and Composition with CSS

16_584251 ch10.qxd 2/10/05 11:23 PM Page 192

Figure 10-9 shows a right float, using the preceding code but with one change:

float: right;

Left floats are often used to add special effects to text, such as drop caps
(described and illustrated in Chapter 8) or bullets or icons that you want to
insert at the start of each paragraph.

If you want to float both left and right, go ahead. Figure 10-10 illustrates this
double-float. Here’s the code:

<h3><img src=”woofie.jpg” style=”float: left; width: 100px;
height: 75px;”>
<img src=”woofie.jpg” style=”float: right; width: 100px;
height: 75px;”>
Illustrating how a gradient effect works</h3>

Figure 10-9:
Change the

float
value to

right, and
you get this
effect. Right

floats are
more often
used when

inserting
photos than

left floats.

Figure 10-8:
Use the
float

property to
tighten your
designs and

offer the
viewer this

more
professional

look.

193Chapter 10: Organizing Your Web Pages Visually

16_584251 ch10.qxd 2/10/05 11:23 PM Page 193

Canceling a Float with Clear
Text listed in the HTML following a floating image usually flows down along-
side the image, as the various figures in this chapter demonstrate.

But what if you want to force some text to detach itself from the image it
would normally flow around? What if you want to move it down below the
image? Sometimes you don’t want text associated with a particular image.

Also, consider that the actual number of words needed to flow from the top to
the bottom of any given image can vary considerably. The user might resize the
browser window, for example, which has a big impact on the flow. Likewise, the
user’s preferred font size, the resolution of the screen, and other factors can
impact the amount of text that flows. In these situations, you may want to spec-
ify that some of your text must be displayed beneath a floated image — regard-
less of how much the user resizes the browser or other factors. That text must
always ignore the floating and appear below the image.

One problem with floating arises when you have several images on the page.
The clear property can assist you in ensuring that the each element of text
appears next to the image it’s associated with.

The CSS version of clearing is similar to the traditional HTML
 element
used with a clear attribute. In CSS, you use the clear property, along with
the values left, right, or both. Only employ
 with this CSS style to
force the text following the
 to move down below any existing margins
(in other words, to move down into the next clear area on the page).

Here’s an example illustrating the effect that the clear property has. The fol-
lowing code inserts a plain
 tag, but it doesn’t move the paragraph of

Figure 10-10:
You can

combine left
and right

floated
images, like

this.

194 Part III: Adding Artistry: Design and Composition with CSS

16_584251 ch10.qxd 2/10/05 11:23 PM Page 194

text following the
 beyond the floated image. All the
 does is move
the text down one line, as shown in Figure 10-11:

<body>

<img src=”woofie.jpg” style=”float: left; width: 200px;
height: 150px;”>

<p>You can apply gradients to various images, as you wish.
Imagine the nice fade-in effect that you can
generate if you add some scripting to slowly
adjust the opacity value while the user is
watching.

We want this paragraph to be disassociated from the previous

paragraph and from the floating image. You can
apply gradients to various images, as you wish.
Imagine the nice fade-in effect that you can
generate if you add some scripting to slowly
adjust the opacity value while the user is
watching.</p>

</body>

As you can see in Figure 10-11, inserting a plain
 element merely creates
a paragraph break (moves the text down to the following line). But what we
really want to do with this text is move it all the way down past the image.

However, by adding the CSS clear property and specifying a left value,
you force the text to move down beyond the floated image, as Figure 10-12
illustrates.

<br style=”clear: left”>

Figure 10-11:
Using an
ordinary

 simply
moves the
text down

one line.

195Chapter 10: Organizing Your Web Pages Visually

16_584251 ch10.qxd 2/10/05 11:23 PM Page 195

Use the left value, obviously, when you want to override an element floating
left. I’ll leave it up to you to figure out when the right and both values are
used.

As is usual with CSS (and impossible in traditional HTML), you can apply the
clear property to any element, not just text and images. So, if you run into a
situation where you want to ensure that an element is positioned below a
floating element, use clear.

If you do a lot of clearing in a page or site, you might want to create a generic
class that can be applied with a div or span tag, like this:

div.spacer
{

clear: both;
}

Figure 10-12:
When you

want to
move some

text down
beyond a

floated
element,

just use the
clear

property.

196 Part III: Adding Artistry: Design and Composition with CSS

16_584251 ch10.qxd 2/10/05 11:23 PM Page 196

Chapter 11

Designing with Auto
and Inline Elements

In This Chapter
� Working with auto
� Setting margins and centering text

� Managing inline elements

ACSS element’s box is a virtual, imaginary shape composed of an ele-
ment’s contents, plus its optional padding, border, and margin, if any.

The box dimensions are not necessarily the same as the visible contents or
the visible border. If padding is used, the box grows to include the padding
dimensions. If a border or margin are further added, they, too, increase the
size of the box. However, padding is never itself visible — it merely creates
space between its element and surrounding elements or the browser frame.

When you understand the concept of the virtual box, you’re well on your way
to managing effective page layout. And, as you discover in this chapter, CSS
offers you further control over the behavior of content and margins by allowing
you to use the auto value. CSS even allows you to add features such as borders
and margins around inline elements, such as the italics (<i>) element. In this
chapter, you explore both topics — auto and inline manipulations — to see
what to employ and what to avoid.

Employing Auto to Control Layout
Of the four possible zones of a Web page — content, padding, border, and
margin — only two, the element’s content and optional margin, can be set to
auto. Auto allows the browser to automatically resize content and margins:
This enables you to do some pretty interesting things, such as stabilizing a
graphic in the center of the Web page, no matter how the user resizes the
browser.

17_584251 ch11.qxd 2/10/05 11:24 PM Page 197

This next example allows the browser to automatically adjust the size of the
right margin, to ensure that a paragraph remains at a fixed size and at a fixed
distance from the left side of the browser window.

You can individually specify the left, right, top, and bottom margins using, for
example, code like this:

p {width: 150px; margin-right: auto; margin-left: 150px;}

This interesting style says that the content should be fixed at a width of 150
pixels, and that the left margin is fixed at 150 pixels. The parent element is, in
effect, the browser window itself (technically, the parent is the <body> ele-
ment if no other parent is involved, but the browser window certainly seems
to be the parent). In other words, the total distance from the left side of the
browser window to the right side of the content (the paragraph’s text) must
be maintained at 300 pixels. The right margin, however, automatically adjusts
to maintain those two other fixed widths. The effect of the auto property is
to freeze the paragraph at a specific horizontal location within the browser
window, even if the user stretches or shrinks the browser window by resizing
it (or if some other event causes resizing).

To understand this effect, take a look at Figure 11-1. This paragraph uses no
CSS style. No auto value is in effect, so when the user widens the browser
window (the window on the right side), the text widens to fill the width of
the window.

The browser on the left in Figure 11-1 is stretched and ends up looking like
the browser on the right. The paragraph of text widens to accommodate the
new browser width.

Figure 11-1:
When you
don’t use
auto, a

paragraph
stretches as

necessary
to fill the

width of the
browser
window.

198 Part III: Adding Artistry: Design and Composition with CSS

17_584251 ch11.qxd 2/10/05 11:24 PM Page 198

In Figure 11-2, by contrast, you see the effect of adding a CSS style employing
auto. Here’s the code that causes the paragraph to freeze in one position
(a stable distance from the left side of the parent browser window, in this
example):

<html>
<head>

<style>

p {width: 150px; margin-right: auto; margin-left:
150px;border: 2px solid;}

</style>
</head>

<body>

<p>This paragraph’s right margin is set to auto. The box
dimensions are not necessarily the same as the
visible contents, or the visible border. If
padding is used, then the box grows to include the
padding dimensions. If a border or margin are
further added, they, too, grow the size of the
box.

</p>
</body>
</html>

Figure 11-2:
With the

right margin
set to auto
and the left
margin and

width
specified,

this text
doesn’t

move or
resize when

the user
resizes the

window.

199Chapter 11: Designing with Auto and Inline Elements

17_584251 ch11.qxd 2/10/05 11:24 PM Page 199

Figure 11-2 demonstrates that stretching the browser window wider (right)
does not stretch the paragraph wider. The right margin in this figure automat-
ically adjusts to whatever size necessary to maintain the paragraph’s size
and position.

If you set all three width properties — width, margin-left, and margin-
right — to a specific, absolute size (such as 150 pixels), you’ve created an
impossibility. What can the browser do when the user stretches the browser
window? One of these three width measurements must become flexible. They
can’t all remain fixed, can they? In this situation, the browser automatically
changes the margin-right property to auto and ignores your specified size.

Specifying margins
If you specify left and right margins, but don’t specify width, an element
stretches its width to accommodate and maintain the requested margins. For
example, if you specify that the left and right margins should be 150 pixels,
the width property of the paragraph then becomes (of necessity) auto.

p {margin-left: 50px; margin-right: 50px; border: 2px solid;}

Figure 11-3 illustrates that specifying both left and right margins but omitting
a width specification causes the browser to assume that the width is auto.

This next style has the same effect as the previous style in the preceding
code:

p {width: auto; margin-left: 50px; margin-right: 50px;
border: 2px solid;}

Figure 11-3:
When you

specify this
paragraph’s

margins,
but not its
width, the

paragraph
adjusts its
width as if

you had set
the width
to auto.

200 Part III: Adding Artistry: Design and Composition with CSS

17_584251 ch11.qxd 2/10/05 11:24 PM Page 200

Centering
Figure 11-3 illustrates one way to center a paragraph, but what if you want to
freeze its size as well as centering it? In other words, you want it to remain in
the middle of the browser and resist being resized (as in Figure 11-3) if the user
stretches the browser window. The following code is supposed to do just that:

p {margin-left: auto; margin-right: auto; width: 200px;}

However, at the time of this writing, Internet Explorer version 6 chokes on the
preceding code and simply sticks the paragraph against the left side (using
no left margin). Mozilla Firefox and other browsers get it right, however, as
you can see in Figure 11-4:

This is one of the few instances where Internet Explorer 6 fails to correctly
interpret a CSS style. This technique of setting margin left and right to auto is
technically the correct way to center and freeze the size of elements in a CSS
style. I’m hoping that IE gets on the bandwagon soon.

Using !DOCTYPE to force IE to comply
You can make IE render the previous example (and some other kinds of CSS
rules) by inserting the following line of code at the top (above the <html>
element) of your page of code. Here’s how it looks:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Strict//EN” >

<html>
<head>

<style>
p {margin-left: auto; margin-right: auto; width: 200px;}
</style>

Figure 11-4:
Mozilla can

handle
using auto
margins to
center an

element. IE
cannot.

201Chapter 11: Designing with Auto and Inline Elements

17_584251 ch11.qxd 2/10/05 11:24 PM Page 201

This !DOCTYPE declaration can have unintended side effects such as chang-
ing proprietary IE behaviors that you might be exploiting (relative font sizes,
for example, can render differently). But if you want to try using the declara-
tion, it does force IE 6 to switch to its CSS standards-compliant mode.

Vertical Positioning with Auto
Just as you can set three properties to auto when sizing and positioning hori-
zontally (width and the left and right margins), so, too, can you in theory
use the auto value with the equivalent vertical properties: height and the
top and bottom margins.

Strangely, centering an element when using normal flow (the default) is rather
difficult because if you try to use auto as the value for the margin-top or
margin-bottom properties, the value is evaluated as zero! Auto is just ignored
in this case. Recall from the discussion of horizontal centering earlier in this
chapter that auto margins can be used for centering — and indeed using auto
margins is the recommended technique for CSS centering.

You can freeze the top position of an element using the following code. Just
specify the top-margin value, but ignore the element’s height:

p {width: auto; margin-top: 100px; margin-bottom: 100px;
border: 2px solid;}

Figure 11-5 shows how an element can be put in place in a specific vertical
location, but its height is not frozen. Adjusting the browser (or parent ele-
ment) shape can add or subtract from the element’s height (see how the
paragraph loses some height on the right side of Figure 11-5, when the
browser is widened).

You can fiddle around with absolute or relative positioning and achieve
vertical positioning that works in some of the minor browsers, but these
workarounds still don’t work in Internet Explorer. Also, don’t be tempted
to fiddle with the vertical-align property. It’s designed to manipulate
the position of inline text elements (such as superscripting); the vertical-
align property has no effect on block-level content.

Here’s example code that does work fine in Firefox and Netscape:

div {
height: 100%;
width: 100%;
display: table;

202 Part III: Adding Artistry: Design and Composition with CSS

17_584251 ch11.qxd 2/10/05 11:24 PM Page 202

position: fixed;}

p
{
display: table-cell;
vertical-align: middle;
}

Handling Inline Elements
In CSS, an inline element is a small element right within a line of text (such as
the or <i> elements). You can fool around with inline elements in text in
many ways: drawing borders around individual words or phrases, padding,
including margins, inserting extra large characters or words, dropping
graphic images into the middle of a paragraph, and other annoying tricks.

Why annoying? These kinds of adjustments to text are almost always ugly
and unsophisticated. Just because CSS allows you to apply virtually any
property to any element doesn’t mean that you should.

Text manipulations, generally speaking, are best left to those who designed
the typeface in the first place. Start adding inline frames, borders, margins,
large characters or graphics in a line of text and you begin to approach the
unattractive, hard-to-read, text effects found in ransom notes and a child’s
first attempts at printing.

Figure 11-5:
Center

vertically by
freezing the
top margin.

203Chapter 11: Designing with Auto and Inline Elements

17_584251 ch11.qxd 2/10/05 11:24 PM Page 203

The only exception to this is the vertical-align property, which can be
valuable if you need to make text superscript or subscript. This topic is cov-
ered in Chapter 7.

However, for the sake of completion, I briefly cover some of the nasty, spooky
things you can do via repositioning and otherwise molesting perfectly good
text. (Never let it be said that you don’t get your money’s worth from a
. . . For Dummies book.) This section of the chapter should serve more as a
warning than a guide.

Inline elements, unlike block elements, are generally rather small and, as
their name suggests, in a line of text. You can insert nonreplaced elements
such as strong (which makes text darker) or drop in replaced elements like
an image. (Replaced elements are those such as an image, where the content
is inserted on the fly, rather than existing in the code itself. A nonreplaced
element, on the other hand, is a word of text: It’s in the actual code of the
Web page, so it doesn’t need to be replaced by content in some outside file.)

You can take a perfectly good paragraph of text and mess it up by adding an
inline element, a span in this case, defined with a CSS border, as shown in
Figure 11-6:

The crime in Figure 11-6 was committed by this code:

<html>
<head>

<style>

span {border: 3px dotted;}

Figure 11-6:
A border

stuck into
some text.

It’s like a
necklace
around a

parrot’s
neck — it

catches
your eye,

and then it
looks

ridiculous.

204 Part III: Adding Artistry: Design and Composition with CSS

17_584251 ch11.qxd 2/10/05 11:24 PM Page 204

body {font-size: large;}

</style>
</head>

<body>

<p>The nasty, spooky things you can do by via repositioning
and otherwise molesting perfectly good text. This
section of the chapter should serve more as a
warning than a guide.HERE IS SOME INLINE
TEXT WITH A BORDER!...looks pretty bad,
right?</p>

</body>
</html>

I don’t want to annoy or shock you with multiple examples of tortured inline
positioning resulting in distasteful text layout. Instead, I content myself with
one more example involving applying padding to an inline element. It not only
looks bad, but part of the text also becomes unreadable as a result.

Here’s the code that produces the special effect shown in Figure 11-7:

<style>

span {background: linen; padding-top: 16px;}

</style>

Figure 11-7:
A new low

in tormented
text, thanks

to padding
used with

an inline
element.

205Chapter 11: Designing with Auto and Inline Elements

17_584251 ch11.qxd 2/10/05 11:24 PM Page 205

Truthfully, I’ve yet to see — or even imagine — a use for these kinds of inline
element manipulations, but I’m equally sure that someone, somewhere has
invented a clever technique involving just these properties applied to just
these inline elements. If you know of any, please e-mail me at richardm52@
hotmail.com.

206 Part III: Adding Artistry: Design and Composition with CSS

17_584251 ch11.qxd 2/10/05 11:24 PM Page 206

Chapter 12

Handling Tables and Lists
(And Doing Away with Tables)

In This Chapter
� Choosing the right list style

� Binding lists to other elements

� Displaying tables with CSS

� Avoiding using tables for layout

� Creating free-form designs without tables

Ah, now I come to the classics. The venerable backbone of classic
HTML — tables. What would Web designers ever do without tables?

They’ve been to traditional Web page layout what frames are to houses or what
chicken wire is to a parade float: It’s what you attach everything else to.

In theory, you’re supposed to be able to create vibrant, complex Web page
designs without using tables at all, thanks to CSS. In practice, most of today’s
Web pages are still — behind the curtain — held together by tables. Think
I’m toying with you? Go to almost any well-known site like www.cnn.com or
www.bbc.com, choose View➪Source in Internet Explorer to see the HTML,
and I’ll bet you don’t have too look far to find your first <table> element.
You won’t have to look much further to find dozens more.

In this chapter, you see what impact CSS has had on HTML lists, and then go
on to explore how CSS can either embrace tables, or, perhaps, somehow, even
replace them altogether.

This chapter has two focal points. First, it explores what CSS contributes in
the way of special properties for lists and tables. (The answer, for you impa-
tient types, is, “Not much.”) Second, you see how you can free your Web pages
from dependency on tables for their structure and layout. This — the CSS
positioning features — is a big contribution that CSS has made to Web page
design and one that, sooner rather than later, all Web page designers should
embrace. The CSS positioning features are just a much more sensible way of
doing things than using those old, cumbersome table techniques.

18_584251 ch12.qxd 2/10/05 11:25 PM Page 207

List Styles O’ Plenty
Lists, of course, are the simpler cousins of tables. Instead of items spread out
in two directions — both horizontal and vertical — as in a table, a list limits
itself to a simpler horizontal stack of items. A list is like a single column in a
table. And because it’s a simpler format, lists normally don’t need the help of
borders to frame the individual cells. Bullets, dingbats, or numbers generally
serve to visually separate one list component from the next.

But lists do have their uses, as Martha Stewart would surely agree. (I’ve long
suspected that Martha has so many lists that she probably needs a master
list of all of her other lists.)

CSS allows you to manipulate lists in many ways that are not possible in HTML.
You can use one of three graphic symbols as bullets with an unordered (also
known as an unnumbered or bulleted) list. Obviously, even a list with bullets
is not haphazard, as the term “unordered” suggests. The three symbols are

� Disc: the most common symbol, a black, filled dot, and it’s also the
default CSS list style

� Circle: an empty outline of a circle

� Square: a filled square

Here’s code that produces Figure 12-1. Notice that I didn’t specify the first
style, but instead simply used the (unordered list) element. That’s
because the disc (a dot) is the default unordered list style:

<html>
<head>

<style>
body {font-size: large;}
</style>
</head>

<body>

first
second
third

<ul style=”list-style-type: circle;”>
first
second
third

208 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 208

<ul style=”list-style-type: square;”>
first
second
third

</body>
</html>

Here are the six styles of numbered (ordered) lists:

� decimal: 1. 2. 3.

� lower-roman: i. ii. iii.

� upper-roman: I. II. III.

� lower-alpha: a. b. c.

� upper-roman: A. B. C.

� none: The items in the list are indented like all other lists, but with no
graphic or numeric symbols.

CSS2 adds a few languages to the group of styles (Armenian, lower-Greek and
so on). CSS2 also includes a decimal-leading-zero style that inserts a 0 in front
of all numbers below 10 (01. 02. 03.).

Figure 12-1:
The three

bulleted
(unordered)

list styles
are dots,

circles, and
squares.

209Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 209

Getting exotic with the
list-style-image property
If you want to use a different graphic as a bullet — something more exciting
or exotic than the supplied disc, circle, or square — use the list-style-
image property, as illustrated in Figure 12-2.

<html>
<head>

<style>

li {list-style-image: url(“shadow.jpg”);}
body {font-size: large;}
</style>
</head>

<body>

onezee
doozee
thrice

</body>
</html>

If, as you can see in Figure 12-3, the graphics don’t align in the middle of the
text characters, it’s not your fault. The text is forced to align with the bottom
of a list-style-image.

Figure 12-2:
You can

easily
substitute
your own

custom
buttons,

rather than
merely

relying on
the built-
in discs,

circles, or
squares.

210 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 210

The solution is to go back to the graphics application where you designed the
bullet graphic and chop off the bottom of the graphic, thereby lowering it.
This is illustrated in Figure 12-4:

You cannot resize the list-style-images using, for example, height and
width properties. Instead, you must resize your image in a graphics applica-
tion such as Photoshop.

Positioning lists
If you want to adjust the way your bulleted or numbered lists indent (when a
list item contains multiple lines of text), you can specify inside or outside
values for the list-style-position property. The effect is relatively minor,
but if you specify the inside value, you get a drop cap-like effect — nesting
the bullets or numbers within the text — as shown in Figure 12-5:

Figure 12-4:
Adjust the

white space
around
a bullet

graphic to
reposition

it in the
Web page.

Figure 12-3:
Unfortun-

ately, these
bullets
are not

centered;
they’re a

bit too high.

211Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 211

This code produces the inside effect shown in Figure 12-5:

ul {list-style-position: inside}

The default is the outside position, shown in Figure 12-6.

Why is the style displayed in Figure 12-6 (the default) the most popular? It
looks better, and it helps the reader in the same way bullets and numbers are
supposed to: helping them quickly recognize the items in the list.

Figure 12-6:
This default
indent style

is the one
almost
always
used in

books and
magazines.

Figure 12-5:
Use

the inside
value with

the list-
style-

position
property to

move the
second line
of text over

to the left.

212 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 212

Putting it all together
As you might expect, CSS offers a shorthand format for list formatting. The
list-style property combines the features of the three previously described
properties: style-type, style-image, and style-position. It looks like this:

<style>
li {list-style: circle inside}
</style>

Or, to include your own bullet, use this code, where shadow.jpg is the name
of the graphic file you would like to use as a bullet:

<style>
li {list-style: url(“shadow.jpg”);}
</style>

Or, to define a particular element:

<ul style=”list-style; square inside”>

Managing Tables
Nowadays, tables are used in Web pages for far more than they were originally
intended. The plan was to simply use them to display tabular data — an
ordinary table of information. However, tables have served for years as a grid
upon which to build the entire Web page.

The fundamental problem is that HTML did not provide a viable way to
arrange the various components or visual zones within a page. Designers
who work with magazines, in advertising, and other fields expect to be able
to position page elements precisely where they want them to go — down to
the tiniest unit of measurement. (On a computer monitor, that unit of mea-
surement is the pixel.) But with HTML, even when you used tables as a way
to hang your other content, you never got pixel-level control.

Stalking invisible .gifs
Then designers, notably David Siegal, author of Creating Killer Web Sites
(Hayden, 1997), came up with the idea of using a single-pixel .gif graphic as a
way of positioning content using tables. The graphic can be easily resized to
whatever space you need to fill to make your page look good. Just adjust the
width and height properties to suit your purposes, as illustrated in Step 5
below. What an invisible table cannot accomplish by positioning your elements
on a larger scale, you can fine-tune by inserting invisible graphics images.

213Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 213

To see how prevalent the use of this kind of spacer image is now, follow
these steps:

1. Open Internet Explorer, type msn in the Address field, and press
Ctrl+Enter.

Internet Explorer fills in the www. and .com and other necessary redun-
dancies (as if you were looking for this in some other location than the
World Wide Web, and as if it didn’t have a com extension).

You go to the msn.com site.

2. Choose View➪Source.

Notepad opens, displaying the source code for the MSN Web page.

3. In Notepad, choose Edit➪Find.

The Find dialog box opens.

4. Search for c.gif.

5. Press F3 repeatedly and notice how many times you find this graphic
referenced.

You’re likely to find quite a few references to this image (although the
width and height are variable):

<img src=”http://hp.msn.com/c/home/c.gif” width=”25”
height=”20” />

By changing this image’s width and height, you can create space. You’ll find it
inside table elements, too. Lotsa times.

Or look at the source code for other sites such as www.cnn.com, where you
are likely to find mystery .gif files that have no visible content (but do have
width and height attributes). They’re often located inside tables, as you’ll
see. I found an interesting one named px.gif.

Before I get into how CSS enables you to design pages without using tables as
a backbone, first consider the table-layout property, a feature that CSS
brings to actual tables. By actual tables, I mean tables that behave like tradi-
tional tables: displaying information to the user in tabular format, as opposed
to tables hiding behind the layout of the Web page, merely providing the
framework upon which you hang your page’s visible content.

Employing the table-layout property
The CSS table-layout property allows you to specify whether your table
cells should expand to display their entire contents, or remained fixed. The
default value is auto, which means that the browser is burdened with the job

214 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 214

of calculating each cell’s size before laying out the table. However, you can
use the fixed value for the table-layout property and speed things up by
specifying a maximum size for the cells. This can, however, cut off part of a
photo, as shown in Figure 12-7:

As you can see in the following code, the figure on the left (the first figure
specified in the code) is in a table with its table-layout property set to
fixed. No amount of resizing the user’s browser stretches or shrinks this
figure. It’s fixed at the width specified (150 pixels here). (The height of the
table’s cell is unaffected by all this.)

<html>
<head>
<body>

<table>
<tr>
<td>

<table style=”table-layout: fixed; width: 150px; border:
solid”>

<tr>
<td>

A friend in contemplative thought, reduced to grayscale.</td>
</tr>
</table>
</td>
<td>

<table style=”table-layout: auto; border: solid” >
<tr>

Figure 12-7:
When you

use the
fixed value

for table-
layout,

you can
cause the

contents to
be cut off,

as in the
table on
the left.

215Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 215

<td>

A friend in contemplative thought, reduced to grayscale.</td>
</tr>
</table>
</td>
</tr>
</table>

</body>
</html>

The second table is set to auto, and thus the browser is allowed to stretch
those cells so that they widen to display the entire contents, as you can see
in the table on the right in Figure 12-7. (For a detailed discussion of auto, see
Chapter 11.)

Avoiding properties not supported by IE
The caption-side property is intended to add a brief bit of descriptive text
or a caption or title, to the top, right, bottom, or left of a table. It doesn’t work
in Internet Explorer 6 or earlier, so avoid it. Plus, it’s pretty ugly even when
it’s working.

IE ignores or improperly handles these three CSS properties as well: border-
collapse, border-spacing, and empty-cells. These properties attempt to
govern how borders are displayed, including drawing no border if a cell con-
tains no content (empty-cells). However, until IE responds to these proper-
ties correctly, employing them is clearly not a good idea.

Doing Without Tables
For years, the dream of many Web page designers has been to find some way
to avoid relying on the extensive, bloated code required to lay out a Web
page using tables and spacer images. CSS positioning brought us much closer
to that elusive goal. If you assume that 95 percent of your Web page’s audi-
ence is using Internet Explorer, and that very few are using the old renegade
Netscape 4, you can move a table-based layout over to CSS style without feel-
ing guilty or worrying that some users see havoc on their screen. CSS posi-
tioning is now widely accepted and results in essentially predictable effects
in browsers. Here are the two primary advantages of designing a page using
CSS rather than tables:

216 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 216

� You accomplish most of your style definition in one location in your CSS
code, rather than having to specify multiple attributes throughout all
kinds of table elements.

� Your code (markup) is much “lighter” (less verbose and complex),
making it easier to read and maintain.

Truth be told, Netscape browsers have provided more support for CSS prop-
erties like positioning and float than IE. It’s only now that IE is supporting these
properties that designing without tables has at last become practical (given
that most people use IE for their browser). CSS has been ready to make this
change from tables to table-free positioning; IE has not.

Positioning where you will
Tables are cumbersome and include loads of elements within elements,
so avoid resorting to them when possible. When you don’t force tables to
do jobs for which other techniques are better suited, pages load faster.
Pages have less code to send, less code for browsers to figure out, and
the code is more easily understood and modified by the designer and
programmer.

Multicolumn layouts are perhaps the most common style of organization for
Web pages, just as you find columns of text in newspapers and magazines.
The columns serve to organize the contents horizontally, just as elements
such as paragraphs, rules, and headlines help the reader see how the infor-
mation is organized vertically. The result, in most pages laid out in this kind
of grid, is essentially a table, a set of “cells” containing paragraphs or
groups of paragraphs. And for years now, nested tables were the only viable
solution to creating many kinds of Web pages.

CSS specializes in describing how things should look, including how they
should be positioned. The top, left, and position properties allow you to
create styles describing the various zones on your page.

Placing content willy-nilly
Sometimes you want to break out of the more formal columnar, grid-like
layout so common in Web pages. You want to position a few paragraphs here
and there, willy-nilly — wherever your design sense tells you they look good.
In this section, I show you that approach first, before doing a more text-heavy,
column-based layout.

217Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 217

The trick when using CSS positioning is to create classes or IDs that specify
where you want your zones located. (You can throw in formatting, coloring,
and other qualities, as well, if you wish.)

Using the absolute value with the positioning element causes the element to
be positioned without reference to the normal flow in the page. The element
has no influence on, and is not influenced by, other elements except for its
containing block. In the examples below, the containing block is the body.
Any space that the absolutely positioned element might have used up in the
normal flow is ignored during the page layout. The element thus has no effect
on other elements at all.

Notice in the following code that I use absolute positioning, which causes each
division to be placed independently of all the other divisions. They don’t bump
into each other like train cars. Also, because percentages are used to describe
position (the top, left, and width properties), when the user resizes the
browser, the elements move around to maintain their relationship to the body,
as the body element takes on different shapes.

In the following code, I’ve eliminated some of the actual paragraph text to
avoid wasting space:

<html>
<head>

<style>

.topheadline {
padding: 10px;
font-size: xx-large;
font-family: arial black;
left: 12%;
top: 0%;
width: 75%;
position: absolute;}

.biggestcolumn {

top: 25%;
padding: 10px;
font-size: small;
left: 50%;
width: 40%;
text-align: justify;
background: lightgrey;
position: absolute;}

.mediumcolumn {
padding: 10px;

218 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 218

top:40%;
left: 5%;
width: 35%;
background: lightsalmon;
position: absolute;}

.smallcolumn {
padding: 10px;
left: 45%;
width: 25%;
top: 65%;
background: lightsalmon;
position: absolute;}

</style>
</head>

<body>

<div class=”topheadline”>
THIS IS THE MAIN HEADLINE
</div>

<div class=”biggestcolumn”>
The biggest column: Here you are specifying that you want the

first paragraph displayed in a special green
version of the highlight class, but ...

</div>

<div class=”mediumcolumn”>
The medium column: Here you are specifying that you want the

first paragraph displayed in a special green
version of the highlight class, but ...

</div>

<div class=”smallcolumn”>
The small column: Here you are specifying that you want the

first paragraph displayed in a special green
version of the highlight class, but ...

</div>

</body>
</html>

As you can see, a set of classes is defined in the style at the top of the code.
Each class describes a position on the body of the page. In the body section
of the code are a set of divisions, each referencing one of the classes. The
result is shown in Figure 12-8:

219Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 219

Figure 12-8 does have its problems, though. It violates some of the design
principles you explored in Chapter 8. For example, it isn’t as balanced as it
could be, tending to be weightier toward the top left, and it has no focal
point. Nothing is in the hot spots to attract the eye. What if we added a
background graphic?

<style>

body {
background-image: url(backfish.jpg);
background-repeat: no-repeat; }

This background contains a floating ball focal point, and also helps unify the
rest of the page with the light, abstract, circular design. To further tie things
together, adjust two of the divisions (text blocks) to remove their background
and drop the text into the background. These text blocks are also repositioned:

.biggestcolumn {

top: 25%;
padding: 10px;
font-size: medium;
left: 50%;
width: 40%;
text-align: justify;

Figure 12-8:
This design
avoids the
traditional

grid layout.
Sometimes

designs
like this

are called
free-form.

220 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 220

position: absolute;}

.smallcolumn {
padding: 10px;
left: 25%;
width: 25%;
top: 70%;

position: absolute;}

</style>

Finally, lower the main headline on the page:

.topheadline {
padding: 10px;
font-size: xx-large;
font-family: arial black;
left: 12%;
top: 10%;
width: 75%;
position: absolute;}

Figure 12-9 shows the results of these improvements.

Figure 12-9:
You can
improve

the design
by adding

some
graphic

elements
and fiddling

with the
positions

of the
blocks
of text.

221Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 221

Loving your layout a little too much
If you have a design that you can’t stand to see move around a bit, use spe-
cific measurement units (along with the absolute position value) to fix the
size and position of your text blocks and other elements.

The designs discussed earlier, and illustrated in Figures 12-8 and 12-9, are
somewhat plastic, fluid, and unfixed. If the user lengthens the browser, for
example, that changes the meaning of top: 10%. A <div> specified at that
position must, therefore, move down the stretched browser to maintain its
ten percent distance from the top. In other words, ten percent isn’t the same
distance if the user resizes his browser windows.

However, you can refuse to allow your precious, hard-won positioning to be
disturbed. You can pin your <div> elements to their positions (relative to
each other), so even if the outer frame (the browser window) is resized, the
internal design — the visual relationships between the graphic elements on
the page — remains fixed. The way to do this is to replace all the percentage
values with specific units of measurement such as inches or pixels.

Here’s how fixed-unit code looks. This code creates the results shown in
Figure 12-10:

<html>
<head>

<style>

body {
background-image: url(background.jpg);
background-repeat: no-repeat; }

.topheadline {

font: bold 48px/.99 “Arial Black”; letter-spacing: -.06em;
padding: 10px;

left: 100px;
top: 85px;
width: 475px;

position: absolute;}

.biggestcolumn {

padding: 10px;
font-size: medium;

left: 200px;

222 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 222

top: 200px;
width: 370px;

text-align: justify;

position: absolute;}

.mediumcolumn {
padding: 10px;
font-size: medium;
top:420px;
left: 80px;
width: 350px;
position: absolute;}

.smallcolumn {
padding: 10px;
left: 590px;
width: 200px;
top: 430px;
position: absolute;}

</style>
</head>

Figure 12-10:
Used fixed
units if you
want your
design to

remain
unaffected

by adjusted
browser
shapes.

223Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 223

Notice that the headline in Figure 12-10 is tightened up, by removing space
between both the letters themselves, as well as between the lines. These
useful techniques contribute to an attractive Web page and are discussed in
detail in Chapter 7:

font: bold 48px/.99 “Arial Black”; letter-spacing: -.06em;

Figure 12-11 shows the same page as Figure 12-10, but the browser has
been resized. Notice that the internal design — the size and position of
the elements — has remained stable and fixed.

Creating Columns that Resize
with the Browser

Of course, the free-form designs demonstrated in the previous examples
aren’t appropriate for every Web site. In fact, most businesses continue to
prefer the more staid, often more text-intensive, classic grid layout that
tables have been supporting for so long in Web pages.

Figure 12-11:
No matter

what the
aspect ratio

of the
containing

browser,
these

various text
blocks
remain

in position.

224 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 224

But you can overturn the tables; just throw them out. Use techniques similar
to those described for the free-form layout, but when you define your styles,
float the blocks (they’re really columns now that they’re horizontally lined up
next to each other). In this next example, you use two columns of text that
resize if the browser is widened or narrowed. (For additional details on using
float, see Chapter 10.)

Figure 12-12 and Figure 12-13 illustrate how to use classic columns that resize
in a graceful way when the browser is resized:

Here’s the code that produced Figures 12-12 and 12-13, with some of the body
text removed to avoid wasting space:

<html>
<head>

<style>

body {
background-image: url(background.jpg);
background-repeat: no-repeat;
padding: 24px;

Figure 12-12:
This two-

column
design is
created
without

resorting to
tables. It’s
pure CSS.

225Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 225

}

.topheadline {
font: bold 48px/.99 “Arial Black”; letter-spacing: -.06em;
padding: 5px; }

.leftcolumn {
float: left;
width: 35%;
padding: 10px;
text-align: justify;}

.rightcolumn {
float: left;
width: 65%;
padding: 10px;
margin-bottom: 23px;
text-align: justify;}

.midhead {
clear: both;
font: 24px/.99 “Arial”; letter-spacing: -.06em;
text-align: right;
padding-bottom: 15px;

}

hr {
clear: both;
height: 2px;
width: 90%;
background-color: mediumspringgreen;
}

</style>
</head>

<body>

<div class=”topheadline”>
THIS IS THE MAIN HEADLINE
</div>

<div class=”leftcolumn”>
The left column: Here you are specifying that you want the

first paragraph displayed in a special green
version of the highlight class, but the second

</div>

<div class=”rightcolumn”>

226 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 226

The right column: Here you are specifying that you want the
first paragraph displayed in a special green
version of the highlight class, but the second

</div>

<hr>

<div class=”midhead”>
You know what you will, but do as you may, for all is long
</div>

<div class=”leftcolumn”>
The left column: Here you are specifying that you want the

first paragraph displayed in a special green
version of the highlight class, but the second

</div>

<div class=”rightcolumn”>
The right column: Here you are specifying that you want the

first paragraph displayed in a special green
version of the highlight class, but the second

</div>

</body>
</html>

Figure 12-13:
Here you
see how

the columns
have grace-

fully read-
justed after

the user
resized the

browser,
making the

browser
narrower.

227Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 227

Because this design uses two columns, you specify a float: left, but also
ensure that the two columns (plus any padding, borders, or margins) don’t
add up to more than 100 percent. In this example, the leftcolumn class is
specified at 35 percent the width of the body, and the rightcolumn class at
65 percent. This way, no matter how the user might resize the browser
(making it wider or narrower), the widths retain their relative sizes, as Figure
12-13 illustrates. The left column is about half the size of the right column.

If you want three or more columns, just create additional classes for column-
three and columnfour (or whatever you want to call them). And give them
percent widths so that all of the columns (their boxes) added together don’t
exceed a width of 100 percent.

In the above code, the clear property is used for the horizontal rule and the
middle headline. Recall that using clear forces the element to move below a
floating element (such as our columns). For more on the clear property, see
Chapter 10.

In this example, the right column aligns to the left side of the browser in
Firefox and Netscape (probably to maintain the width of 35 percent in the left
column). If you specify that the right column should float right, the problem
is eliminated in those browsers. Also note that the order in which elements
appear in the markup affects how they are rendered (especially when using
float). For example, placing the right column markup above the left column
flip-flops their display. Changing the right column to float right makes it float
right regardless of whether it appears before or after the left column markup.

Building Fixed Columns
Freezing your column widths (rather than allowing them to resize as illus-
trated in Figures 12-12 and 12-13) is easy to do. Use a position: absolute
property-value and specify the position and size of your columns (their left,
top, and width properties) with fixed units of measurement such as pixels.
Here’s how such a column style looks:

.topheadline {
position: absolute;
top: 25px;
font: bold 48px/.99 “Arial Black”; letter-spacing: -.06em;
padding: 5px; }

.leftcolumn {
position: absolute;
top: 135px;
left:25px;
width:200px;
text-align: justify;}

228 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 228

.rightcolumn {
position: absolute;
top: 135px;
left:260px;
width:200px;
text-align: justify;}

.thirdcolumn {
position: absolute;
top: 135px;
left:495px;
width:200px;
text-align: justify;}

When using absolute positions, you’re responsible for ensuring that the left
properties of your columns work as they should. The width of the leftmost
column, for example, helps you determine what the left property of the
next column should be. In this code, the leftmost column is 200 pixels wide
(with 25 pixels added to that for its left position). You position the right-
column class further over by giving it a value of 260 pixels for its left position.
The third column starts at 495 pixels.

Because these are absolute positions, any padding built into the body
is ignored.

If you want to add additional columns below these blocks of text (see the four
blocks of text in Figure 12-13), you have to create additional classes for them.
The three existing column classes in this code — leftcolumn, rightcolumn,
and thirdcolumn — have a fixed, specific top property (130 pixels for all
three of the columns). Obviously, columns lower on the page require a greater
top property value.

When you create fixed columns like these, no matter how the user resizes the
browser window, the text columns remain in the same position (relative to
the top left of the window) and also do not change their size or shape.

Figures 12-14 and 12-15 show how these fixed columns do not yield their
positions, or change their shapes, when the browser is resized.

The body of your page includes the various divisions (the columns in this
case); their positions are governed by the classes you created in the style
section:

<body>

<div class=”topheadline”>
WHEN SHIPS HEAD TO SEA
</div>

<div class=”leftcolumn”>

229Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 229

The right column: Here you are specifying that you want the
first paragraph displayed in a special green
version of the highlight class, but the second

</div>

<div class=”rightcolumn”>
The right column: Here you are specifying that you want the

first paragraph displayed in a special green
version of the highlight class, but the second

</div>

<div class=”thirdcolumn”>
The right column: Here you are specifying that you want the

first paragraph displayed in a special green
version of the highlight class, but the second

</div>

</body>

Figure 12-14:
Here’s a

fixed-
column

layout with
three

columns.

230 Part III: Adding Artistry: Design and Composition with CSS

18_584251 ch12.qxd 2/10/05 11:25 PM Page 230

If you need to build a form (such as a series of text boxes for the user to fill
in to register with your site, or order some goods), you might be tempted to
revert to tables. But, like tables, forms can easily be built using CSS alone.
Create CSS rules for the row, label, label value, left side of the form and right
side of the form. Now build a row in the HTML code of your page, insert the
left content, right content, and then use a spacer to clear the floats. Next
build another row. You can even get fancy and include headers and footers
for forms, too. Building forms with CSS can be painful at first, until you learn
the techniques, but it has the usual benefits of resulting in less markup code
and more control over the final result.

Figure 12-15:
When the

browser
is resized,

the columns
remain
frozen

in place.

231Chapter 12: Handling Tables and Lists (And Doing Away with Tables)

18_584251 ch12.qxd 2/10/05 11:25 PM Page 231

232 Part III: Adding Artistry: Design and Composition with CSS

Nesting boxes within a page box
Consider these suggestions to help you more
quickly reposition an entire Web page at once.

The downside about absolute positioning is that
it makes moving everything on the page at once
difficult. Each placeholder must be moved indi-
vidually. Instead, you may prefer to create an
outermost box that you name “page” and use it
to relatively position all your elements within.

Here’s why: What if you complete a site using
CSS layout and absolute positioning, but the
boss later tells you that all corporate Web
pages must now be 798 pixels in width, and cen-
tered in the browser with a white border around
them. What the boss says, goes, right? You’ve
got a pretty big revision to do if all your elements
are positioned absolutely.

To solve this problem, create a page box as the
outermost box, and then relatively position

everything within that outer box. This way, you
can move the whole “page” down, over, cen-
tered, or wherever you want without having to
manipulate the positions of each element inside.
Consider, for example, using an absolutely posi-
tioned outer box with areas for a header, footer,
sidebars, and so on. (Note that those inner ele-
ments are relatively positioned.)

Another useful technique is to first draw a tem-
plate on paper for your Web page. This is very
helpful: Relative nesting of boxes gets confus-
ing if you try to do it ad hoc on the computer.
After you’ve drawn the overall design, write the
CSS code to make that design come to life on
the screen. Add content to the page and rela-
tively position it within the template. You can
easily rearrange your pages by swapping head-
ers, footers, sidebars, or main content areas just
by changing the CSS for those areas.

18_584251 ch12.qxd 2/10/05 11:25 PM Page 232

Chapter 13

Creating Dramatic Visual Effects
In This Chapter
� Adding static filters

� Increasing excitement with dynamic transitions

� Transitioning between pages or sites

Awell-designed Web page is a wonder to behold, but it’s not a joy forever.
Right now, your Web pages primarily compete with magazines and

other static media. This won’t always be the case, however. Eventually, Web
pages must go up against the excitement offered by television and other
active, dynamic, animated media. In fact, the Web may well one day blend
with digital TV into a single medium. After all, a pixel is a pixel, and all that
separates the Internet from television is some hardware restrictions, some
old habits that are a little hard to break, and, above all, the fact that televi-
sion production and Web design are — for the time being anyway — two
different jobs.

Given current Internet bandwidth restrictions affecting more than half of
the visitors to your site, you can expect that these 56K modem-connected
folks won’t sit still and wait for your page to download heavily animated
moving picture shows. (Bandwidth refers to the amount of info that can
stream through.) However, at least 40 percent of urban home users in the
United States now have high-speed Internet. And that trend shows no sign
of slowing down. Experts estimate broadband penetration may reach 70
percent relatively soon.

For one thing, nearly 80 percent of American workers are exposed to broad-
band Internet, usually at their workplace. And after you’ve tried broadband,
you don’t want to go home to a pokey 56K modem.

Now that you’re convinced that Internet bandwidth will make animated Web
pages increasingly popular, why not get your feet wet by exploring some of the
cooler tricks currently available? In this chapter, you explore transitions —
ways to segue your users (or should we call them viewers?) from one image
to the next, or between Web pages. You also get a little taste of adding the
power of scripting to CSS — writing some simple programs that react to the
user clicking a button on your page.

19_584251 ch13.qxd 2/10/05 11:26 PM Page 233

Impressing with Static Filters
I discussed filters briefly in Chapter 1. Use filters if you can assume that
people not using Internet Explorer won’t suffer from not seeing them. Filters
are a Microsoft-only technology, and though you can use them with CSS
styles, CSS itself hasn’t yet progressed to embrace animation (unless you
consider hyperlinks that change color when clicked a form of animation).
However, many filters are merely used to add some nice visual effects and
those who browse without IE only miss some beauty (not much information)
by not seeing them.

Here’s an example of a static filter. (A static filter doesn’t change over time;
we’ll get to dynamic filters, or transition filters, in the section called “Dazzling
with Transition Filters.”) Try this code to see a filter that adds drop shadows
to text, <div> blocks, and so on:

<html>
<head>

<style>

p {height: 350px; width: 450px; font-size: 44pt;

filter: progid:DXImageTransform.Microsoft.Shadow
(color=’gray’, direction=120, strength=6)

}

</style>
</head>

<body>

<p>
Get a Drop Shadow Effect
</p>

</body>
</html>

Adjust the direction value to anything from 0-360 to rotate the light source
around the object casting the shadow. Because I believe that most natural
shadows fall on the lower right of objects, I like to use 120 as the value.
Microsoft agrees with me. (Or is it the other way around?) Take a look at the
shadowing on Windows elements such as buttons, icons, and window frames:

234 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 234

The shadowing on these elements indicates a light source coming from the
upper left of an object. Adjust the strength value to lengthen the shadow.
Figure 13-1 was generated from the preceding code:

In my view, you’re generally better off creating an image in a graphics applica-
tion like Photoshop if you want to add drop shadows and most other “filter”
effects. In other words, just shadow some text in the graphics application,
and then save the result to a .jpg file. (I think .jpg offers better quality than
the .gif format sometimes used in Web pages.) Then simply import the finished,
polished result into your Web page using the tag. Photoshop and simi-
lar applications specialize in such effects, and the results are generally more
subtle and more fine than you can get by trying to trick things up via CSS.
Browsers aren’t designed to achieve the most sophisticated graphics effects,
and browsers generally cannot compete with the delicacy and variety of the
tools in Photoshop, Picture Publisher, and other graphics applications. CSS
has many uses, but I think you’re asking too much of it when you try to use it
for special graphic effects.

For people with slow modems (who turn graphics off) or those who have visual
or other impairments, always including the alt tag with each image is good
practice. That way, if someone can’t see your graphics, or is listening to the
text of the page being read out loud, they’ll still get the necessary information.
Here’s an example of how to use alt:

<img src=”seashore.jpg” alt=”This is a pleasant, if cliched,
photo of a typical, deserted Aussie beach.”>

I don’t use alt in this book for clarity; I avoid including code that distracts
from the main point being made in each example. However, you should
include alt in your Web pages.

Figure 13-1:
Adding

shadows is
one of 16

static filters
you can add
to your page

elements.

235Chapter 13: Creating Dramatic Visual Effects

19_584251 ch13.qxd 2/10/05 11:26 PM Page 235

Here’s the list of the 16 static filters you can experiment with: alpha,
basicimage, blur, chroma, compositor, dropshadow, emboss, engrave,
glow, ICMfilter, light, maskfilter, matrix, motionblur, shadow, and
wave. These static filters — and more dynamic ones — are Microsoft exten-
sions to the “official” CSS specifications. You can find a complete reference
to the filters and their arguments (or values as CSS prefers to call them, or
attributes as HTML prefers) at this address, Microsoft’s “Visual Filters and
Transitions Reference”:

http://msdn.microsoft.com/library/default.asp?url=/workshop/
author/filter/filters.asp

In the example shown in Figure 13-1, using gray with the shadow filter pro-
duces a respectable drop shadow, but experiment with some of the other
filters if you wish. The dropshadow filter is separate from the shadow filter,
for example. But whereas the shadow filter provides a convincing gradient
(a shift from dark to light), the dropshadow filter offers only a solid shadow.
Paradoxically, the dropshadow filter doesn’t produce as good a drop shadow
as does the shadow filter. So, if you do decide to use static filters despite my
advice in the preceding tip — well, a curse upon you! Whoops . . . I momentarily
lost it. I meant to say that you’ll just have to try the various effects, and their
associated values, to see what looks good to you.

Change the filter to the dropshadow type and see the results in Figure 13-2:

filter:progid:DXImageTransform.Microsoft.dropshadow(OffX=5,
OffY=5, Color=’gray’, Positive=’true’)”

Here’s one more example of a static filter. This one’s called motionblur, and
the effect can be similar to drop shadows, as you can see in Figure 13-3:

Figure 13-2:
This drop

shadow
effect

doesn’t
include a
gradient,
as does

Figure 13-1.
Experiment

until you get
the effect

you like.

236 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 236

Here’s the code that produced Figure 13-3:

<style>

p {height: 350px; width: 450px; font-size: 44pt;

filter:progid:DXImageTransform.Microsoft.MotionBlur(Strength=
5,Direction=120);}

The subtle effect in Figure 13-3 is achieved through restraint. I kept the
strength at a low value of 5. To see what happens if you use this filter as
intended, look at Figure 13-4:

The result shown in Figure 13-4 is achieved with this code (note I increased
the strength to a value of 45):

Figure 13-4:
Changing
the direc-

tion and
increasing

the strength
of the

motion-
blur filter

creates
this special

effect.

Figure 13-3:
The

motion-
blur filter

can provide
a gradient

shadow
effect,
if used

cautiously.

237Chapter 13: Creating Dramatic Visual Effects

19_584251 ch13.qxd 2/10/05 11:26 PM Page 237

filter:progid:DXImageTransform.Microsoft.MotionBlur(Strength=
45,Direction=270);}

In Chapter 16, you experiment in depth with dynamic code, which allows you
to change CSS styles while the user is viewing your Web page. For example, if
the user moves the mouse pointer over, say, some small text, its font-size
CSS style can be modified and can then resize from 10 pixels to 25 pixels,
right before their startled eyes. Chapter 16 also covers the related concept
of script programming in depth.

Dazzling with Transition Filters
I might get a little ahead of myself here, introducing a bit of scripting (program-
ming for Web browsers), but what the heck? Chapter 16 goes deeper into this
interesting topic. However, just for fun, I want to show you how to trigger
some interesting transition filters (also known as dynamic filters) using script.

When you write script, you have to decide between the two great families of
programming languages: Basic and C. My preference is Basic, but many
people (mostly professional programmers) prefer the C-like scripting language
JavaScript. For this first example, I’ll provide a script for both languages if
you’re interested in comparing them. Here’s the Basic version:

<html>
<head>

<SCRIPT LANGUAGE=vbscript>

dim toggle

function fader

mydiv.filters(0).Apply

if toggle = 1 Then

toggle = 0
mydiv.style.backgroundColor=”indigo”

else
toggle = 1
mydiv.style.backgroundColor=”lime”

end if

mydiv.filters(0).Play

End Function

238 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 238

</SCRIPT>

</head>

<body>

<DIV ID=”mydiv” STYLE=” background-color: indigo;
height:400px; width:500px;

filter:progid:DXImageTransform.Microsoft.Fade
(duration=3);”>

</DIV>

<button onclick=”fader()”>Click Me!</button>

</body>
</html>

For those who prefer C and Java, here’s the JavaScript version of the same
function:

<SCRIPT>

var toggle = 0;

function fader() {

mydiv.filters[0].Apply();

if (toggle) {
toggle = 0;
mydiv.style.backgroundColor=”indigo”;}

else {
toggle = 1;
mydiv.style.backgroundColor=”lime”;}

mydiv.filters[0].Play();
}

</SCRIPT>

Microsoft has long promoted VBScript, but someone decided to make
JavaScript the default scripting language for Internet Explorer. Therefore, you
need not specify JavaScript in your code, as in <SCRIPT Language=Java
Script>. You can just use <SCRIPT>.

239Chapter 13: Creating Dramatic Visual Effects

19_584251 ch13.qxd 2/10/05 11:26 PM Page 239

As you can see, the differences between these two scripts aren’t massive. The
primary difference, actually, is that the C languages insert lots of unnecessary
semicolons and braces all over the place. But in other programming, the C
languages use reverse syntax (the opposite of the way it would be expressed
in ordinary English) and other complications.

Try executing this code and you’ll see a large square fade from purple to green
when you click the button. Click it again and the fade reverses back to purple.

This cool effect is brought to you courtesy of the fade filter. When the button
is clicked, the browser responds by doing whatever is assigned to the onclick
attribute. In this case, it’s a function (a behavior described in programming
code, script in this case) named fader. (You can name your functions what-
ever you want.) So, the browser carries out whatever instructions are in the
fader function. Here’s the code that triggers the fader function:

<button onclick=”fader()”>Click Me!</button>

That function begins by setting up a variable named toggle that, like a light
switch, is toggled between two states. As with functions, you can name vari-
ables whatever you want to: You could call it MarthaWashington if you wanted.
But programmers like to name variables in a way that reminds them of what
the variable is supposed to do, so I called it toggle.

Inside the function, you first apply (set up) the filter in the mydiv element:

mydiv.filters(0).Apply

Mydiv, too, is just another name I made up. It’s just the ID for the <div> tag.
The script knows which div to manipulate thanks to this ID name.

Don’t worry about why you use the (0). It’s a quirk of computer languages
that makes no sense — they start counting up from zero rather than one. Just
use the code and don’t bother your pretty head about it. Just apply this filter.

Next is a common programming structure, the if. . . then. Actually, it’s a
pretty common situation in life, too. It means, if the toggle variable holds a 1,
then change the color to purple indigo (and at the same time, put a zero into
the toggle variable). That way, the next time the user clicks this button,
something else happens. Namely, the color changes to lime and a 1 is
assigned to the toggle variable:

if toggle = 1 Then

toggle = 0
mydiv.style.backgroundColor=”indigo”

240 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 240

else
toggle = 1
mydiv.style.backgroundColor=”lime”

end if

Finally, after the background color has been changed, the play method is
triggered and the transition fades as you requested:

mydiv.filters(0).Play

Play is a function that’s built into the IE browser, so you don’t have to write
this function. You can just name it. Same with the apply function.

For tricks on debugging script (fixing things that don’t work right because
you didn’t do the programming correctly), see Chapter 17.

If you want to use this script with a different kind of transition, just make a
simple change to the name of the filter and perhaps tweak the attributes. To
see the blinds transition (it looks like Venetian blinds), all you have to
change is the name of the filter in the code, like this:

filter:progid:DXImageTransform.Microsoft.Blinds(duration=3)

Make this change, and then load the file into Internet Explorer and click the
button. You see the result shown in Figure 13-5:

Figure 13-5:
The

blinds
transition

effect
looks as if

someone is
opening

Venetian
blinds.

241Chapter 13: Creating Dramatic Visual Effects

19_584251 ch13.qxd 2/10/05 11:26 PM Page 241

You can play around with additional parameters for transitions as well. Find
them described and listed at

http://msdn.microsoft.com/library/default.asp?url=/workshop/
author/filter/filters.asp

For example, the blinds transition has arguments (or attributes) in addition
to the duration argument used in the previous example. You can also spec-
ify the direction in which the blinds open and close, as well as the number of
bands. If you want vertical blinds, try this:

filter:progid:DXImageTransform.Microsoft.Blinds(duration=3,
direction = ‘right’)

And if you want more bands (blinds . . .why can’t they call things what they
are?), specify the number. The default is ten bands (as you can see in Figure
13-5), but go wild and ask for 20. You get the transition effect shown in
Figure 13-6:

filter:progid:DXImageTransform.Microsoft.Blinds(duration=3,
direction = ‘right’, bands=20)

A famous transition called the wipe consists of a single large line moving
across the screen, replacing, for example, one image with another as if it were
sliding into view. You can do various kinds of wipes by setting the blinds tran-
sition’s values to (direction=’up’, bands=1). Vary the direction prop-
erty to vary the wipe direction.

Figure 13-6:
You can
specify

both the
direction —

vertical
here — and
the number

of blinds
for this

transition.

242 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 242

Fading Between Images
Another really useful, attractive effect is to fade or wipe or otherwise transition
between two images. You’ve doubtless seen this technique. It’s used in all
browsers because it can be applied via JavaScript. Some of the best-designed
Web sites use delicate fades — often triggered when you first view the page
as a kind of introduction, with one image gently dissolving into another.

If you want to see some good examples of JavaScript code for “rollovers,”
fades, and other transitions, visit this site:

http://brothercake.com/site/resources/scripts/transitions/

To try this next example (IE-only), ensure that you have two .jpg files in the
same folder on your hard drive where you save the .htm file. These files must
be named first.jpg and second.jpg. You must also include a graphics file named
texture.jpg that can fill the background with some kind of light texture.

<html>
<head>

<SCRIPT LANGUAGE=VBScript>

function fadethem()

myimage.filters.item(0).Apply()
myimage.src=”second.jpg”
myimage.filters.item(0).Play()

end function

</SCRIPT>

<style>
H1 {font-size: 42px;padding-left: 3%;}
BODY {background-image: url(texture.jpg);}
</style>

</HEAD>

<BODY>

<H1> Join us! We Have all Styles of Houses</h1>

<IMG ID=myimage width=60% height=70%

243Chapter 13: Creating Dramatic Visual Effects

19_584251 ch13.qxd 2/10/05 11:26 PM Page 243

src=”first.jpg”
style=”filter:progid:DXImageTransform.Microsoft.
fade(Duration=2);

border= 14px solid peru inset; position=relative; left=20%;”>

<INPUT type=button style=”position=relative;left=83%;font-
weight: lighter;

font-size: 20px; width: 120px; font-family: ‘times new
roman’; height: 44px”

value=”See More” onClick=”fadethem()”>

<IMG src=”first.jpg” style=”width:1;
height:1;visibility:hidden”>

<IMG src=”second.jpg” style=”width:1; height:1;
visibility:hidden”>

</BODY>

</html>

The script in this example is simple because you merely click the button
once to exchange the images — no toggling. But it’s all as smooth as butter,
and looks pretty impressive. Sites that use this effect stand out from the
crowd. Notice that the two images are defined as having a hidden value for
their visibility property, but the first image is in the code twice. The first
occurrence defines the size, border, and position for both images. That
occurrence also seeds the first image so that the visitor to your site sees the
first image when the page loads.

Figures 13-7 through 13-9 illustrate the transition effect, where one “house”
gradually changes places with the other:

If you prefer to use JavaScript in the above code, you just need to dump a
bunch of extraneous punctuation into the preceding VBScript code:

<SCRIPT LANGUAGE=JavaScript>
function fadethem()
{

myimage.filters.item(0).Apply();
myimage.src=”second.jpg”;
myimage.filters.item(0).Play();

}
</SCRIPT>

244 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 244

Figure 13-8:
After

you click,
the other
building
starts to

fade into
the picture,

as the
first house
fades out.

Figure 13-7:
Before

you click
the button,

you see this
building.

245Chapter 13: Creating Dramatic Visual Effects

19_584251 ch13.qxd 2/10/05 11:26 PM Page 245

When you write script for a browser, it’s like embedding a computer program
into your HTML. Clearly a Web site run by someone from the dark side —
those disturbed, childish virus authors — could easily cause some damage
if you visited their site. The script languages have some built-in safeguards.
For example, they have no commands to access the hard drive. However,
canny evildoers know ways around this, so some people configure their
browsers to refuse scripts. (To do this in Internet Explorer, choose Tools➪
Internet Options➪Security➪Custom Level and select the Disable or Prompt
(Ask First) buttons under Scripting.) Also, if you’ve installed the latest
Microsoft security packs, you’ll see a small message at the top of Internet
Explorer (see Figure 13-10) when the preceding .htm file is loaded into the
browser. It warns that your page contains “active content.” If the user clicks
the warning, the scripting on the page is then allowed to execute.

Transitions between Pages
Would you like your entire Web page to fade in (or otherwise transition)
when the user first visits your site? You can do whole-page transitions by just
adding a little so-called “meta” code to your HTML code.

Figure 13-9:
After the

transition
is finished,

you see
only the
second

graphic.

246 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 246

247Chapter 13: Creating Dramatic Visual Effects

Will they ever get their act together?
The mayhem never ends: Those in charge of
defining punctuation, diction, and other ele-
ments of computer programming are never con-
tent to have just one way of describing
something. That would be too easy and effi-
cient. No, each new committee insists on putt-
ing its stamp on things — not all that different
from children scratching their names in wet
concrete: JASON WAZ HERE! These commit-
tees of “experts” from Microsoft, other compa-
nies, or academia seem to come up with some
new, incompatible variant diction at every stan-
dards meeting. Nor do they allow these variants
to act as synonyms (each working just fine in all
contexts). No, that would be too logical. It would
prevent bugs and confusion. It would be effi-
cient. Instead, they usually require that each
context have its unique usage, so that you have
to learn lots of extra rules and regulations. You
can imagine how much pleasure this kind of
muddle gives the hearts of little bureaucrats
everywhere. For example, here are four differ-
ent ways that you can describe a graphics file in
a Web page. And they cannot be substituted for
one another — each variation is required in its
special context.

In the <style> element, you specify the graph-
ics file value by using a colon (not an equals
sign) and then url followed by the filename in
parentheses, followed by a semicolon, like this:

body {
background-image: url(back-

fish.jpg);
}

However, when you specify a graphics file as an
attribute within an HTML element definition, it’s
all different. You must now use quotation marks

around the filename and remove the parenthe-
ses. The attributes are not separated by semi-
colons, just by spaces, like this:

<body background-image=”tex-
ture.jpg” font-size: 24px;>

Yet another variation involves the tag.
You specify its file using the attribute src with
an equals sign and quotation marks like this:

Finally, if you use the shorthand background
property, you separate the values with spaces,
use a colon after the property, use url, quota-
tion marks, and parentheses, like this:

h2 {background: url(“coin.jpg”)
no-repeat left top;

You must memorize these variations. Face the
fact that you’re bound to get them confused
now and then and have to waste your time look-
ing up the correct punctuation and usage.
These committees are often made up of tedious
people with no idea of the confusion and chaos
that they cause. Think of the cumulative effect
of this sloppy and never-ending manipulation of
computer languages: Huge amounts of collec-
tive programming effort is being wasted trying
to figure out why code doesn’t work, and why
programmers can’t make their intentions clear
to the computer. If you’ve ever done any pro-
gramming, you know the effect: The first time
you write a line of code, it often simply does not
work. Even if you’ve written CSS or other kinds
of computer code for years, you’ll still find that
your first stab at a line of code often fails. Don’t
blame yourself. Blame those whose egos are
injected into the process of creating these lan-
guages. No wonder we call their results code.

19_584251 ch13.qxd 2/10/05 11:26 PM Page 247

Put this code within the <head> element, the same place you normally put
scripts and, sometimes, CSS styles. Try this simple Web page to see some
really cool transitions:

<html>
<head>

<meta http-equiv=”page-enter”
content=”progid:dximagetransform.microsoft.wheel(duration=4)”

/>

<meta http-equiv=”page-exit”
content=”progid:dximagetransform.microsoft.stretch(duration=3

,stretchstyle=’spin’)”

/>

</head>
<body>

<h1> Visit Us Often! We Have Lots of Great Transitions</h1>

</body>

</html>

Now save this file as effects.htm to your hard drive. Double-click on it in
Windows Explorer and it loads the page into Internet Explorer. If you see a
security warning, click the warning and permit this page to load. Then try
pressing F5 to reload the page. Watch the cool “wheel” effect when the page-
enter condition (event, as it’s called) happens. Now to see the page-exit
transition, the stretch effect, click one of your links or the home page icon
to go to a different Web site. Then press Backspace to return to this page
once again.

Figure 13-10:
Some users

see this
warning
when a

Web page
employing

scripts
loads,

telling them
of potential

danger.

248 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 248

Try various other transitions you’ll find listed here:

http://msdn.microsoft.com/library/default.asp?url=/workshop/a
uthor/filter/filters.asp

If I were you, I’d avoid using the page-exit transitions unless you have a
multipage Web site and you want to use them between your own pages. (No
matter what, make them of short duration.) Transitions do take a bit of time
and some people might be annoyed with you for making them watch your page
grudgingly yield to the site they’re trying to visit next. You can also replace
the page-enter and page-exit events with site-enter and site-exit
events if you wish.

Microsoft’s FrontPage Web design application makes it easy to configure the
transitions discussed in this chapter (and plenty of other transitions as well).
In FrontPage, choose Format➪Page Transitions.

249Chapter 13: Creating Dramatic Visual Effects

19_584251 ch13.qxd 2/10/05 11:26 PM Page 249

250 Part III: Adding Artistry: Design and Composition with CSS

19_584251 ch13.qxd 2/10/05 11:26 PM Page 250

Part IV
Advanced CSS

Techniques

20_584251 pt04.qxd 2/10/05 11:29 PM Page 251

In this part . . .

This Part is all about advanced CSS techniques — stuff
even the CSS gurus sometimes don’t know. You wres-

tle the concept of CSS inheritance until you have pinned it
to the ground and can provide selector rules for almost
any conceivable location in the tree structure. You experi-
ment with future CSS3 features, including several that are
testable now in the Mozilla Firefox browser. You discover
ways to do things that would be impossible with CSS
alone by adding JavaScript or VBScript to your CSS bag of
tricks. Among other techniques, you find out how to actu-
ally change your CSS rules, or even add new rules, dynam-
ically while a user is viewing your page in a browser. (You
don’t even have to be there at the time.) Finally, you delve
into the best ways to check your CSS and HTML for errors
before you send your baby out into the World (Wide Web,
that is).

20_584251 pt04.qxd 2/10/05 11:29 PM Page 252

Chapter 14

Specializing in Selection
In This Chapter
� Working with tree structures

� Distinguishing parenthood from ancestry

� Inheriting through offspring

� Handling contextual selectors

When styles cascade, their effects bump down to lower levels like snow
falling down a tree. Unless you specify otherwise, a style cascades

down through your document and is applied wherever its targets (the selec-
tors) are located. It’s also applied to any descendant elements — elements
embedded within the target, such as an italics element embedded within a
paragraph.

Is there a way to apply styles to an element only if it’s embedded within a
particular element, rather than universally? In other words, can you ask for
example that italics within headlines be boldface, but not when they’re within
paragraphs? You bet. Selectors can be designed so they’re highly specific.
But before looking at special kinds of selectors, it helps to first have a good
grasp of how a browser moves down through the structure of a document,
deciding how and when to apply CSS styles.

To get a real understanding of selecting, inheritance, specificity, and the
cascade, you have to understand the concept of the tree structure that
describes the design of a Web page. In this chapter, you see how a tree
structure works and also how to use specialized selectors.

Getting Specific with Inheritance
I introduced the concept of specificity in Chapter 2. Specificity means that if
two styles conflict, the style “nearest” the element wins. Say that a <p> style
is defined in an external (.css file) style sheet as italic, but <p> is defined as
normal, non-italic in a document’s “embedded” style (inside the <head>
</head> tags). The embedded style is located closer to the <p> elements
in the document, so it wins: It’s the style that gets applied.

21_584251 ch14.qxd 2/10/05 11:29 PM Page 253

Likewise, in a conflict between styles defined in an embedded style and an
“inline” style (a style defined within an HTML element itself such as <p style=
”font-style: italic;”>), the inline style is closer. In fact, inline styles are
right there inside the element itself, so the inline style is the winner.

Grasping tree structure
Inheritance relates to the tree structure that underlies all Web pages. Imagine a
simple document with only two paragraphs. Its tree structure would illustrate
how the paragraphs were subordinate (were “child” elements) to the body (the
“parent” element of both paragraphs). Put another way, the paragraph tags are
inside the <body> </body> tags, so the <p> elements are the children of the
parent <body>. The tree diagram of this document looks like Figure 14-1:

Parents versus ancestors
You’ll hear the terms parent-child and ancestor-descendant. Not all ancestors
are parents, although all parents are ancestors. Get it? Probably not. I didn’t
get it at first. Few people do.

These relationships don’t mean exactly the same thing. A parent-child
relationship is the closest possible: The parent is precisely one level (in the
tree structure) above its child. However, inheritance can flow further than one
level, and when it flows down past a child (to that child’s children or beyond)
that relationship is described as an ancestor-descendant relationship.

Still unclear? Well, put down the martini or the cat or “close friend” or what-
ever it is that’s distracting you, and focus.

<body>

<p> <p>

Figure 14-1:
A simple
tree dia-

gram illus-
trates how
these two
child <p>
elements

branch off
from their
common

parent
<body>
element.

254 Part IV: Advanced CSS Techniques

21_584251 ch14.qxd 2/10/05 11:29 PM Page 254

Consider the structure displayed in Figure 14-2. This tree has more branches
than the tree diagram in Figure 14-1 because the first paragraph has a child of
its own, the italic element:

<body>

<p>I cannot <i>emphasize</i> this point enough!</p>

<p>But in this paragraph, I’m calmer.</p>

</body>

Figure 14-2 is a tree diagram of the preceding code:

In the diagram in Figure 14-2, the body is the parent of the two paragraphs,
but the body is only the ancestor of the italics element. The paragraphs are
children of the body. The italics element is the child of its parent paragraph,
and also the ancestor of the body. Class dismissed.

When a root sits above the tree
Above the <body> is the HTML, the root of the structure, as they call it.
And the <head> and <body> elements come next in the tree. To help you
visualize this, here’s a complete Web page. Figure 14-3 is its diagram:

<html>
<head>
<style>
</style>

</head>

<body>

<body>

<p>

<i>

<p>

Figure 14-2:
This

diagram
contains an

ancestor
descendant
relationship
— between
the <body>

and the
<i>.

255Chapter 14: Specializing in Selection

21_584251 ch14.qxd 2/10/05 11:29 PM Page 255

<p>I cannot <i>emphasize</i> this point enough!</p>

<p>But in this paragraph, I’m calmer.</p>

</body>
</html>

So, you gaze at Figure 14-3, with its root (html) and branches going down to
the body and style and then branching further down to the paragraphs and the
paragraph’s children.

Wait a minute. Branches going down from the root?

The shaky tree
Yep. The “tree” metaphor is a little shaky, to be honest. Perhaps it’s quite a
bit shaky, given that the tree is upside down if its root is located at the top of
the diagram. But don’t be picky. Just thank goodness that those in charge didn’t
decide to lay the whole diagram sideways or use an interplanetary metaphor
instead.

Back to our attempt to come to grips with this tree structure. Each element
on the Web page has its place in the hierarchy, its location within the relation-
ships of parents and children. Each element is either a parent of some other
element, or its child, or both. Also, some children are siblings (trees so often
have siblings). I get to siblings shortly. Anyway, the parent is the bigger
branch nearer the root, and the child is the little branch that shoots off from
the parent branch. A single parent branch can have several child branches
shooting off. And everybody belongs to the PTA in this little town . . . oops,
wrong metaphor.

<body><head>

<style>

HTML

<p>

<i>

<p>

Figure 14-3:
Here’s

a com-
plete tree

diagram of
the Web

page code
shown
above.

256 Part IV: Advanced CSS Techniques

21_584251 ch14.qxd 2/10/05 11:29 PM Page 256

Offspring Inheriting
One reason to try to visualize the tree structure is to grasp how inheritance
works. Styles can be applied to some elements, but not to others, based on
the structure of the document. Styles wouldn’t even know how to work if there
weren’t a tree structure or something similar.

You can leverage your knowledge of the tree structure to specify various
kinds of specialized targets for your styles. What if, for example, you want to
underline italics in paragraphs, but never underline them in headlines? You
could go through the entire document entering a border-bottom property or
a text-decoration: underline for each italics element in paragraphs, but
then you aren’t using the efficiency of CSS.

You can create rules that specifically target only those elements with particu-
lar ancestors, or certain siblings (related children — as in the two paragraph
elements in Figure 14-1, which are children of the same parent body), and
other kinds of structural relationships. In this case, I want all italics that are
children of paragraphs to be underlined. I don’t want underlining for italics
in headlines, or lists, tables, or anywhere else. Just paragraphs.

Contextual Selectors
Here’s an example that accomplishes just that by using a technique called
contextual selectors. (Recall that a selector is just another name for an HTML
element, but it’s called a selector when it’s used to specify a CSS rule.) In the
following style, the p and i are both selectors:

<style>
p i {border-bottom: 1px solid;}
</style>

Contextual selectors is a new kind of style definition not previously discussed
in this book. Notice that the p and i are not separated by commas (that kind
of style is called grouping.)

The code above does not mean that all paragraphs and all italic elements are
to be underlined. It means that only italic elements that are children or other
descendants of a paragraph are to be underlined. So an italics element within
a headline is not underlined because that headline is not a descendant of a
paragraph. The style only applies to italics descended from paragraphs. It’s a
contextual selector, not a general selector.

Those in charge of computer programming issues (who are they?) have
issued a proclamation that henceforth everyone should describe contextual
selectors as descendant selectors. But, then, they were the ones who first

257Chapter 14: Specializing in Selection

21_584251 ch14.qxd 2/10/05 11:29 PM Page 257

told us to use contextual. So, rather than wait for their next edict, I think I’ll
just continue using the term contextual.

The result of the following code with its contextual selector is shown in
Figure 14-4:

<html>
<head>

<style>
p i {border-bottom: 1px solid;}
</style>

</head>

<body>

<h1>This <i>is not</i> underlined</h1>

<p>However, this italics element is a descendant of a
paragraph, so <i>it does</i> get underlined.</p>

</body>
</html>

Selecting by context rather than grouping
As you doubtless noticed, and applauded more than once, I’ve rarely repeated
myself in this book. However, because of the similarity between grouping and
contextual selectors, I’ll repeat myself here. Don’t get this contextual selectors

Figure 14-4:
The

browser
knows you
want only

paragraph
italics

underlined,
not head-

line italics.

258 Part IV: Advanced CSS Techniques

21_584251 ch14.qxd 2/10/05 11:29 PM Page 258

technique confused with grouping, where you simultaneously define a style for
several selectors. If you want to group p and i so that all paragraphs and all
italics are underlined, use commas to create a group style, like this:

<style>
p,i {color: blue;}
</style>

By adding that one little comma between the p and i selectors, you create a
grouping, and both elements are given a border bottom, no matter in what
context they appear, as shown in Figure 14-5:

You can use contextual selectors in a variety of practical ways. For example,
you might want to make all text within either a bold or strong element a light
red to draw attention to it. That’s fine. You can do it with a grouping, like this:

b, strong {color: coral;}

However, what if you want to specify an additional rule that states that if
something needs to be emphasized (with the strong selector) within some
boldface (b) text (which is coral), the strong text must turn black? This way
the viewer can actually see the strong emphasis. Unless you create this style,
both the b and strong are indistinguishable — they’ll both be coral.

To do this, you create a contextual selector that states that any strong that’s
a child of (contained within) a b element must be colored black:

b strong {color: black;}

Here’s the complete code that produces the desired result shown in
Figure 14-6:

Figure 14-5:
Here a

grouping
causes a

border
bottom to

appear
beneath all
italics and

paragraphs.

259Chapter 14: Specializing in Selection

21_584251 ch14.qxd 2/10/05 11:29 PM Page 259

<html>
<head>

<style>

b, strong {color: coral;}

b strong {color: black;}

body {font-size: 24 px;}
</style>

</head>

<body>

<P>
This paragraph is entirely bold, so we simply had

to find a way

to emphasize text within the boldness.

<P>
Here’s a paragraph with something just plain bold.

<P>
Here’s a paragraph with something just plain

strong.

</body>
</html>

Figure 14-6:
Using a

contextual
selector,
you can

emphasize
some text

within a
sentence
that itself
is already

bold.

260 Part IV: Advanced CSS Techniques

21_584251 ch14.qxd 2/10/05 11:29 PM Page 260

Descending deeper
Can you go deeper into descendants by adding yet another condition to the
previous style? Sure. Say that you sometimes want to add a blue background
to a few words inside strong text within a bold sentence. You can specify
that any within a (that itself is within a) must have
a blue background. This is a three-level contextual selector. It says, “Add a
blue background if a span is the child of a strong and the descendant of a b.”
Here’s this style, and the result is shown in Figure 14-7:

b strong span {background-color:blue}

Here’s yet another shortcut. What if you want to define multiple contextual
selectors using the same style. What if, for example, you wanted b strong
span’s blue background to also be used when italics appeared with an h2
headline? You don’t have to create a separate style definition, just use a comma
to separate the contextual selectors, just as you would when grouping normal
selectors:

b strong span, h2 i {background-color:blue}

After you’ve described a style for a contextual selector, that style is also
inherited by any children of the selector, indeed by any descendant of that
selector all the way down the tree. (Or should I say, up the tree?)

For instance, if you have a strong or em or some other child element inside
this italics selector, that strong or em child inherits the green color of its
ancestor italics selector:

Figure 14-7:
A three-
element

contextual
selector,
darken-
ing the

background
of a span
(but only

if it’s within
a strong

within a b).

261Chapter 14: Specializing in Selection

21_584251 ch14.qxd 2/10/05 11:29 PM Page 261

p,i {color: green;}

Therefore, the here inherits its parent italic element’s green color:

<P>
Here’s a paragraph with <i>italics, but also some

strong inside the italics</i>.

To prevent inheritance from happening all the way down an ancestry line, if
it doesn’t suit you, see the section titled “Thwarting Descendant Selectors,”
later in this chapter.

Styling distant descendants
The universal selector makes a change to every element. If you want to
turn everything on your page red — all headlines, hyperlinks, paragraphs,
everything — you can use this rule that employs the universal selector (*):

* {color: red;}

But can you use the universal selector with a contextual selector? Aren’t you
the clever kitty! This technique is somewhat confusing, but it can be done. The
effect is to apply styles to elements a certain degree of distance from ances-
tors. For example, if you want only list elements that are great-grandchildren
to be red:

body * * UL {color: red;}

In this next example, only unnumbered list elements that are a grandchild
(or further down such as a great-grandchild) of the body become red:

body * UL {color: red;}

To qualify for this rule, an unnumbered list element must not be a child of
the body element; instead, it must be further removed from the body, such
as being the child of a list item. (The list item itself is the child of the body.)
Only unnumbered list elements that are children of the body are not turned
red: All the rest of the descendent unnumbered list elements do turn red.

If you think all this is usually more complex than useful, you’re an especially
cunning kitty. However, should you ever need to create rules for distantly
descended elements, combining the universal selector with a contextual
selector is the way to go.

262 Part IV: Advanced CSS Techniques

21_584251 ch14.qxd 2/10/05 11:29 PM Page 262

Thwarting Descendant Selectors
Warning: At this time, you cannot apply this next selector trick to code used
in Internet Explorer — it won’t work. What if you only want a child element to
be selected, not an entire series of descendants? To do that, you use the >
symbol, which means only if it’s a child. Here’s how that looks:

p > i {color: blue;}

This means, “Color blue any italic that is a child of a paragraph. But don’t go
any further if the italic has any children or descendants.” So, in the following
paragraph, the strong element won’t inherit the blue color:

<P>
Here’s a paragraph with <i>italics, but also some

strong child inside the italics</i>.

In some cases, you don’t want to select an arbitrarily descended element;
rather, you want to narrow your range to select an element that is a child of
another element. You might, for example, want to select a strong element
only if it is a child (as opposed to a descendant) of an H1 element. To do this,
you use the child combinator, which is the greater-than symbol (>):

h1 > strong {color: red;}

This rule makes the strong element shown in the first H1 below red but not
in the second:

<h1>This is very important.</h1>
<h1>This is really very

important.</h1>

Read right to left, the selector h1 > strong translates as “selects any strong
element that is a child of an H1 element.” The child combinator is optionally
surrounded by white space. Thus, h1 > strong, h1> strong, and h1>strong
are all equivalent. You can use or omit white space as you like.

You can also specify a selector in a way that works on adjacent siblings
(like two paragraphs that share the same <body> element as their parent).
You specify them using the + sign. This, too, however, has not been adopted
by Microsoft’s Internet Explorer.

263Chapter 14: Specializing in Selection

21_584251 ch14.qxd 2/10/05 11:29 PM Page 263

Selectors Using Attributes
Warning: This trick also doesn’t work in Internet Explorer. Attribute selectors
allow you to define a style that applies only to places where a particular
HTML attribute exists as part of an element. Here’s an illustration. Say you
wanted to apply a border around only those paragraphs that had an align-
right attribute:

<p align=”right”>

Or

<p align=”right” color=”blue”>

You would then create a style like this, using brackets:

p[align=’right’] {border: 3px solid gray;}

and hope for the best. However, this doesn’t work in Internet Explorer, so you
can ignore it for now (and perhaps forever). For more on this particular kind
of specialized selector, see Chapter 3.

264 Part IV: Advanced CSS Techniques

21_584251 ch14.qxd 2/10/05 11:29 PM Page 264

Chapter 15

CSS Moves into the Future
In This Chapter
� Comparing CSS2 and CSS3

� Handling pseudo-classes and pseudo-elements

� Considering dubious descendants

Technology marches on. The beavers are busy again, so watch out!
Although slow by technology standards (indeed by any standards), the

committees that define CSS rules and features are still at work, after four years
of effort, trying to come up with CSS3. CSS programmers are still governed by
the set of specs in CSS2, and most browsers have adopted most of the CSS2
rules. Some browsers — notably Mozilla and Firefox — have gone so far as
to adopt some of the more interesting styles and modes of selection in CSS3
drafts.

The CSS committees start out with drafts, which are suggestions. After a few
years of bickering and mulling things over, CSS committees come out with
recommendations, which are also like suggested ideas but stronger.

Nobody actually uses the impolite and, face it, politically incorrect word “rule.”
Well, I do, but my job doesn’t rely on politik jargon or academic doubletalk.
I’m supposed to go for clarity, which I generally try to do. (The concept of the
“rule” does exist in CSS, but it means styles that you impose on your docu-
ments, not rules handed down by The Committee.)

In this chapter, you get to peek under the curtain at some of the more inter-
esting (or in some cases baffling) new regulations being proposed and con-
templated for CSS3. You also discover the unique way that some academics
use the word pseudo. (And you thought it meant false.)

Getting to Know CSS3
CSS3 is the name for the next wave of changes and additions to the CSS
“core.” The core is most of the features described in this book, which are
available in Internet Explorer 6 and many of the minor browsers as well.

22_584251 ch15.qxd 2/10/05 11:33 PM Page 265

CSS3 has been in committee for several years. The first few working drafts
came out in early 2001. Those involved announced that instead of attempting
a sweeping new version, they would roll out “modules” from time to time. Some
of the recommendations have begun to be supported in browsers already, and
other recommendations are likely to take years to even be formally proposed.

Internet Explorer 6 supports nothing from CSS3. That’s why I cover CSS3 fea-
tures only briefly in this book. No one yet knows what (if any) expansions of
CSS will appear in Internet Explorer 7, which will most likely appear in 2006.
Considering the market dominance that Internet Explorer enjoys, if IE 7 doesn’t
support these expansions, what the other browsers do doesn’t matter much,
unless of course Mozilla Firefox takes over the world in the meantime.

If you want to keep track of the latest recommendations and don’t mind
reading some white papers that plunge into exceptionally dreary academic
writing, you can find the papers on new ideas for CSS at www.w3.org/Style/
CSS/current-work.

Here are some of the more significant expected changes that fix existing
problems, or extend CSS capabilities:

� Easier downloading of fonts.

� Greater utility and flexibility in the design of table columns.

� Greater control for users over color schemes. (This feature seems counter
to the idea that a designer should control such issues, in contrast to the
next point, which represents something of a contradiction.)

� Color descriptions so that monitors can more accurately reproduce
what the Web page designer intended.

� More dynamic control over the behaviors of various objects.

Working with Mozilla-supported
CSS3 features
Of the minor browsers, Mozilla’s Firefox seem to be the most interested in
adopting CSS3 features. It permits the use of the new attribute substring
selectors (*, $, and ^) to allow matches to parts of words in attributes. For
example, say that you want to indicate to viewers that a particular link is to
an Active Server Page (Active Server Page filenames end in. asp). Use the $ to
indicate that the substring .asp is at the end of your target. This rule makes
all links to any page ending in .asp become red:

a[href$=’.asp’]{color: red;}

266 Part IV: Advanced CSS Techniques

22_584251 ch15.qxd 2/10/05 11:33 PM Page 266

Of course, this approach to specifying substring matches goes against the
traditional (back to the early days of DOS) punctuation that used * and ? as
the primary symbols. Perhaps even worse, the CSS committee’s chosen sub-
stitution symbols aren’t placed inside the string, but instead are attached to
the attribute name (the $ attaches to href in this example, not within the
string ‘.asp’, where the $ would more effectively convey its meaning). But,
in the CSS tradition, don’t expect sensible conformity to traditional punctua-
tion when it’s so much more adventurous to strike out in new directions and
really confuse people.

Mozilla also supports the CSS3 :not command. Why they prepended a colon
to the traditional and perfectly useful not command is anybody’s guess. This
is a negation pseudo-class selector (more about pseudo-classes shortly). Put
more simply, if something doesn’t pass a test, a certain style is applied. If you
want to put a thick border around any paragraph that currently does not
have a border, for example, here’s how to do it:

<html>
<head>

<style>

p:not([border]){border: 6px solid red;}

body {font-size: 24 px;}

</style>

</head>

<body>

<P style=”border: 3px solid blue”>
Here’s a paragraph with a border defined in a style. </p>

<P>
Here’s a normal paragraph with no border defined, so it gets

a red border. </p>

</body>
</html>

This works as advertised in Mozilla Firefox. The first paragraph has a border
style definition, so it’s got a blue border. The second paragraph has no
border assigned in a style, so it’s given a thick red border.

267Chapter 15: CSS Moves into the Future

22_584251 ch15.qxd 2/10/05 11:33 PM Page 267

If you’re not used to CSS or other computer programming languages (aside
from Basic), you may ask: Why did they design this syntax to sound like a
two-year-old: Paragraph not border is the clumsy syntax of this CSS code.
Couldn’t they have used ordinary English syntax like No border on paragraph
and achieved the same result? Sure they could have. It would have been
easier to remember, easier to read, and easier to fix mistakes. But committees
of academics and professional programmers have agendas other than clarity.
So most programming languages sound fairly Martian with their twisted syn-
tactic flow.

Note that for reasons nobody can explain to me, if you apply a style using a
class, the :not command doesn’t work. In the following example, both para-
graphs are bordered in red in Firefox:

<style>

p.bordr {border: 3px solid blue;}

p:not([border]){border: 6px solid red;}

body {font-size: 24 px;}

</style>

</head>

<body>

<P class=”bordr”>
Here’s a paragraph with a border defined in a style. </p>

<P>
Here’s a normal paragraph with no border defined, so it gets

a red border. </p>

</body>

If you remove the square braces, :not works in this example, like this:

p:not(border){border: 6px solid red;}

Setting opacity
Another new feature that Mozilla has already implemented from CSS3 is opac-
ity, the ability to add transparency to an element. Here’s how it works in the
CSS implementation that Mozilla recognizes and correctly interprets:

268 Part IV: Advanced CSS Techniques

22_584251 ch15.qxd 2/10/05 11:33 PM Page 268

div.maintext {position: absolute; z-index: 2; opacity: 0.5;
background-color: darkkhaki; top: 55;left: 100px;
height: 75%; width: 75%;}

Internet Explorer doesn’t yet know how to handle the opacity property,
but it does have a proprietary opacity filter. To get the same effect in IE,
use this code:

div.maintext {position: absolute; z-index: 2;
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=50);

background-color: darkkhaki; top: 55;left: 100px;
height: 75%; width: 75%;}

Notice that IE uses the sensible value 50 for 50 percent (that’s the way most
people would express the degree of transparency). Unfortunately, the CSS
recommendation employs the less intuitive 0.5 value for 50 percent. This
isn’t to say that Microsoft always makes sensible decisions, but they did in
this case.

In general, if you’re looking to try out the latest CSS features, you’ll find that
Mozilla and its relative, Firefox, are the most experimental and au courant of
the various browsers. Internet Explorer is a bit more conservative, although
it has many features that other browsers do not (including proprietary
Microsoft extensions such as filters).

Discovering False Pseudo-Classes
I call them false pseudo because the double-negative applies. These are true
classes. They’re not fake. They often do a useful job. So, what are these
“pseudo” classes?

To understand the idea of pseudo-classes, first review what a CSS class is:
It’s a way to modify a selector, like an img selector. The class name acts as an
adjective. Imagine that you want some of the images in your site to be framed
in blue. (If you wanted all the images thus framed, you could just define a
style for the img selector, without having to create a class. That way, all
images would get the blue frame.) But you want only some images framed. So
you create a class. It’s as if you make up a new category of image that you
decide to identify as the framed image. So the word framed is the name of the
class. You can use any word to name a class that makes sense to you, but
framed makes sense to me here.

You can, of course, create any class you want by merely making up a name
for your class, like this:

269Chapter 15: CSS Moves into the Future

22_584251 ch15.qxd 2/10/05 11:33 PM Page 269

<html>
<head>

<style type=”text/css”>

img.framed {padding-left: 6px; padding-right: 4px; padding-
top: 6px; border: 12px inset lightblue;}

</style>

</head>

</body>
</html>

In this style, you’ve created a class you want to call framed. Its purpose is to
surround any image whose class is specified as framed with a nice blue inset
border. Any image without the class=”framed” attribute, or with some
other class name attribute, does not get this blue frame. So far so good.

But what is a pseudo-class? Well, folks, it’s not a fake class, as the term
pseudo implies. It’s just a built-in style: a class that the CSS specification
includes that therefore some browsers support and know how to render.
In other words, it’s what CSS has been calling a property.

Pseudo-classes are designed to provide some useful feature, without creating
a new property or adding to the list of HTML elements. It would have probably
have made more sense to just create some new properties, as they’ve done in
the past. Confusing as this terminology is, we now have to live with it: CSS
now features a small handful of special pseudo tricks. Some of them change
the color or other style of an element based on context (such as a hyperlink
that turns a different color to indicate that the user has already visited that
site). Other pseudo tricks are complex ways of selecting based on an ele-
ment’s status within the document tree (such as select all parents with no
child elements). The job of the CSS programmer is to figure out the handful of
pseudo-elements so that we can employ them if needed. Some of them are
pretty useful.

Hyperlink formatting with pseudo-classes
Here’s an example of a useful CSS pseudo-element. Displaying different kinds
of hyperlinks in different colors frequently helps the viewer to navigate your
page. So, the good, busy people involved with CSS committees decided to
create some built-in (pseudo) classes to handle this very common need.

270 Part IV: Advanced CSS Techniques

22_584251 ch15.qxd 2/10/05 11:33 PM Page 270

Here are the four pseudo-classes for the a selector (or element):

a:link {color: #FF0000;} /* an unvisited link */
a:visited {color: #00FF00;} /* a visited link */
a:hover {color: #FF00FF;} /* a link with the mouse hovering

over it */
a:active {color: #0000FF;} /* the selected link */

Notice that the selector (a) is separated from the pseudo-class’s name by a
colon. Also, you must list these styles in this order. Otherwise, the hover and
active styles won’t work right.

Here’s an example to try, to see how convenient this set of built-in behaviors is:

<html>
<head>

<style>

a:link {color: blue;} /* an unvisited link */
a:visited {color: purple;} /* a visited link */
a:hover {color: red;} /* a link with the mouse hovering

over it */
a:active {color: green;} /* the selected link */

</style>
</head>

<body style=”font-size=x-large”>

Click here for CNN

</body>
</html>

Notice that you don’t use any code to identify the pseudo-classes (such as
class=”visited”) in the body, in the element itself. Unlike ordinary classes
that you write yourself, a built-in (pseudo) class takes effect without you
having to add a class= attribute. After all, this set of pseudo-classes work
together to modify the behavior (the colors in this case) of the link element a.

If you save this example as an .htm file and load the file into Internet Explorer,
you’ll notice that the Click here for CNN link does appear blue at first. It then
turns red as your mouse goes over it and turns green when you click it.
However, if you press F5 and try to “reload” the file to experience these
wonderful color changes once again, the link remains green! It’s supposed to.

271Chapter 15: CSS Moves into the Future

22_584251 ch15.qxd 2/10/05 11:33 PM Page 271

You are now looking at the selected link. It’s no longer unvisited. To restart
the process, make some change to the code in the .htm file, such as adding a
<p>. Then resave the .htm file, and reload it into IE. This forces IE to treat this
as a new page and reset the behaviors of the pseudo-classes for a.

Hovering with pseudo-classes
You should feel free to experiment by using these pseudo-classes with ele-
ments other than the a it was originally designed for. In general, CSS wisely
tries to allow you to use most of its features with most HTML elements. Why
restrict designers with artificial limitations? Why not let them fool around
with the various features and discover new ways to exploit CSS?

Hovering is a particularly interesting feature because in its own cheap way it
mimics scripting. (I describe it as cheap because you don’t have to do any
programming to get a Web page to react to the user’s mouse.) The user
hovers the mouse pointer above something with a hover pseudo-class, and
whammo, something happens to the style. At least, that’s the theory.

In practice, however, IE doesn’t permit hover to be used with any element
other than the a, and even the usually generous Mozilla Firefox doesn’t seem
(in my experiments anyway) to allow all elements to respond to hovering.

You can imagine how this might be useful. With hover, you can achieve a
highlighting effect via CSS, rather than the more complex methods of DHTML
and scripting. Try viewing this example with Firefox or a browser that supports
using the hover pseudo-class for elements other than the a (as I pointed
out earlier, IE 6 does not support this feature). Here all paragraphs use the
pseudo-class hover:

p:hover {background: peachpuff; border: 1px solid powderblue}

Load this into Firefox and see the interesting effect when you move your
mouse pointer over the paragraphs in the browser — try different elements
to see which are affected. In theory, they all should be.

You can find loads of examples on the Web showing how to create a hover
effect in IE using JavaScript.

Adding your own class
name to a pseudo-class
If you want, you can add a personal class name to a pseudo-class. For exam-
ple, if you want some of your links to turn pink when the user’s mouse hovers

272 Part IV: Advanced CSS Techniques

22_584251 ch15.qxd 2/10/05 11:33 PM Page 272

over them, stick your made-up class name between the selector and the
pseudo-class name, like this:

a.pinklink:hover {color: pink}

Then, down in the body, refer to this class in the usual way, with a class=
attribute:

Click here for
a real shock.

Selecting first children
A pseudo-class that allows you to select only the first child of an element is
also available. At the time of this writing, however, it doesn’t work in Internet
Explorer.

Say that you want to indent only the first paragraph of the body but not the
rest of the paragraphs. You can use the first-child pseudo-class, like this:

body > p:first-child
{
text-indent:30px;
}

Then, later in the body:

<p>
This first paragraph is indented, yes?
</p>

<p>
But this second paragraph isn’t indented.
</p>

Employing Fake Pseudo-Elements
Guess what? The CSS folks have come up with another category of pseudo
called the pseudo-element. But who cares? I can see no distinction between
pseudo-classes and pseudo-elements, although I’ve read and researched and
pondered. W3.org “explains” the distinction here:

www.w3.org/TR/REC-CSS2/selector.html#q15

If you have any idea what they’re talking about, please email me at
richardm52@hotmail.com. Perhaps the wise guys who make up these
systems and taxonomies can provide some clarification. But do you really

273Chapter 15: CSS Moves into the Future

22_584251 ch15.qxd 2/10/05 11:33 PM Page 273

need to know the distinction at all, if in fact there is one? Nope. Just know
that these various pseudo-whatevers exist in case you ever want to use one of
them. It’s sort of like a car: You can drive just fine without knowing the genus
of all the bugs hitting your window.

Pseudo-elements are used exactly the same way that you use pseudo-styles,
with one exception. You can put a pseudo-class name anywhere you want in a
selector, but a pseudo-element’s name must be listed after the subject of the
selector. (Subject here means whatever elements in the document that match
the selector.) Don’t bother with this ultimately pointless distinction either.
Who !@#)!! cares? Just follow the syntax in the sample code in the next section
and you’ll be fine.

Creating quick drop caps with first-letter
A quick way to add some elegance to your text is with drop caps: large
characters at the beginning of your paragraphs. Sometimes the letter is a
different color than the surrounding text as well. Here’s a style using the
pseudo-element first-letter:

<html>
<head>

<style>

p:first-letter

{color: steelblue;
font-size:44px;}

</style>
</head>

<body style=”font-size=x-large”>

<p>
This first paragraph has a nice drop cap effect that you can

see in steel blue.
</p>

<p>
And this second paragraph has a drop cap too.
</p>

</body>
</html>

274 Part IV: Advanced CSS Techniques

22_584251 ch15.qxd 2/10/05 11:33 PM Page 274

The result is shown in Figure 15-1:

You can use the following properties with the first-letter pseudo-
element: font properties, color, background, margin, padding, border,
text-decoration, vertical-align (if there’s no floating in effect), text-
transform, line-height, float, and clear.

Using the first-line element
for special lines of text
You can also provide a special style for the first line of an element, rather
than just the first letter. Here in this example that increases the size of the
text in the first line of each paragraph:

p:first-line {font-size: 45px}

You can use the following properties with the first-line pseudo-element:
font properties, color, background, word-spacing, letter-spacing,
text-decoration, vertical-align, text-transform, line-height, and
clear.

The Future of Pseudo
The CSS committees will likely continue to add pseudo-features to handle
various kinds of user interfacing. They may also possibly create some addi-
tional dynamic responses that enable the browser window to react without
your having to write any scripts (such as the hover pseudo-class). Of course,

Figure 15-1:
Here’s a

quick way
to add drop

caps to your
paragraphs.

275Chapter 15: CSS Moves into the Future

22_584251 ch15.qxd 2/10/05 11:33 PM Page 275

at this time, IE isn’t supporting many of the newer pseudo-classes, so you
have to essentially avoid these latest pseudo features. Nonetheless, such fea-
tures as the four pseudo-classes that work with hyperlinks (described earlier
in this chapter) are quite useful and work well within IE.

Based on the information in “drafts” floating down from the white towers on
the hill where CSS specifications are dreamed up, you can look forward to at
least some of the pseudo features in the next two sections making their
appearance in CSS in the coming years.

Enabling, disabling
The :enabled and :disabled pseudo-classes allow you to apply the tradi-
tional visual cues to such input controls as check boxes, radio buttons, and
so on. When elements in Windows are disabled (meaning that the user cannot
interact with the control), for example, it’s a convention to turn the control
light gray. This lets people know that the control is inert. One use for such a
feature is if the user is filling in a form and clicks the Never Married check
box. At this point, you would have your Web page disable the How Long Have
You Been Married? check box. There would be no reason to permit the user
to enter information about how long he or she had been married, if he or she
had never been married, right?

Checking radio buttons and check boxes
The :checked and :indeterminate pseudo-classes provide a style (usually
a vibrant color) that indicates the status of a check box. In general, the con-
vention in Windows has been to merely display a check symbol rather than,
say, highlight the text associated with a check box or radio button (instead of
a check, a selected radio button control gets a dot). Indeterminate works
only with the radio button. It has a three-state property: enabled (called
checked by CSS), disabled, and indeterminate. The checked class works
with both radio buttons and check boxes.

I suggest you forget about these button and check box pseudo-classes unless
you have some strange requirements for your user input. Just let the controls
do their thing automatically: visually cueing the user with dots or checks when
the control is clicked. Anything that you add by using a style is probably
overkill and violates the visual conventions of Windows. Violating conventions
often simply confuses and annoys people who, over the years, have gotten
used to the way things work in Windows. Nonetheless, some of the worker
bees at Microsoft sometimes decide that they know best and come up with
bizarre modifications that confound the rest of us. Try, for example, to find
the menus in Windows Media Player version 10. The usual File, Options,
Tools, and Help menus at the top left of almost every Windows application

276 Part IV: Advanced CSS Techniques

22_584251 ch15.qxd 2/10/05 11:33 PM Page 276

for the past decade are really buried in Media Player now. It took me quite a
while to locate the Help menu, which I thought was a bit inconsiderate: It’s a
little like hiding the fire extinguisher. Media Player 10 is an excellent piece of
software, and its visual design is, to me, quite elegant. For example, when you
hover the mouse pointer over the tabs at the top left, the tabs light up subtly,
like wall sconces in an Art Deco theater. But . . . that is where the menus
should be.

Figuring Out Dubious
Descendant Selectors

A set of what are to me dubious “descendant selectors” are coming down
from the CSS gurus in CSS3. Some of these selectors may be more confusing
than useful, but if you’re really into CSS esoterica, grouped patterns could be
just the treat you’ve been looking for.

Descendant selectors specify that a rule applies only to particular children
or descendants, such as only the fourth list item in an unnumbered list. You
can also use it to apply rules to patterns, such as to every third, or every
other, child.

The :only-child selector selects only those elements with, you guessed it,
no siblings (such as a single paragraph within a <div>). A related selector is
the only-of-type selector, which selects a specific type of element, like an
H1 that has no H1 siblings, but does have other siblings, such as a group of
<p> paragraphs. Think of a <div> containing four paragraphs but only one
headline.

Another descendant selector is called the nth-child. To specify a style for only
a particular child, say the sixth item in a list, just use the number itself. This
is not a repeating pattern. This code sets the background color of one child,
the sixth item, to red:

ul:nth-child(6){background-color: red;}

What if you want to use a pattern of styles, such as coloring every other table
item’s background light blue? This is a fairly common way to help the reader
distinguish between the various cells, rows, and columns of a table.

Using the nth-child feature, you can specify groups of children, thereby creat-
ing a pattern. Imagine a list. Inside the parent element inside are
a bunch of child li elements, right? What if you want to color every other
child red in your list? You can use the nth-child pseudo-class to create the
effect:

277Chapter 15: CSS Moves into the Future

22_584251 ch15.qxd 2/10/05 11:33 PM Page 277

ul:nth-child(2n+1){background-color: red;}

This translates to “Group the children (the li elements within the list in this
case) by twos (2n). Then apply the style only to the first element in this
grouping.” To get your head around this brain-twister, it helps to compare
that code to another example. The following turns every fourth list item red:

ul:nth-child(4n+1){background-color: red;}

Instead of specifying a pattern mathematically like the 4n+1 value, you
can instead use odd and even as values rather than numbers to affect
every other descendant, like this:

ul:nth-child(even){background-color: red;}

You can count up from the bottom of a group with the nth-last-child
selector. You can also create groups when elements are mixed together
(they’re all siblings, all children of the same parent, but you want to just
specify a style for, say, the headlines rather than the paragraphs). For that,
use the nth-of-type selector. CSS also offers a combo of the previous two
types: nth-last-of-type.

The variety of selectors goes on. The empty selector selects barren elements
(elements that have no children). First-of-type (or last-of-type) selec-
tors provide a style for only the first or last child. For example, to italicize the
first list item in each list, try this:

ul:first-of-type{text-style: italic;}

Ever inventive, the CSS governing board also offers a none selector:
nth-of-none. It selects nothing. (Just kidding about this last one.)

278 Part IV: Advanced CSS Techniques

22_584251 ch15.qxd 2/10/05 11:33 PM Page 278

Chapter 16

Programmatic CSS
In This Chapter
� Scripting

� Automating CSS features

� Changing style and rules on the fly

� Playing with timers

� Repeating with a metronome timer

Most ordinary CSS is not dynamic, in the sense that it doesn’t respond
to the user. One example that does respond is the pseudo-classes for

the a element, discussed in the Chapter 15. CSS has a feature called hover,
for example, that turns a hyperlink a different color when the user hovers a
mouse pointer over the link.

In general, however, CSS puts a pretty face on Web pages, simplifies design
across a Web site, and its job is then done. Any interaction with the user
thereafter is left up to programming technologies such as ASP.NET or script-
ing (small sections of programming written into an HTML page using the
<script> element). However, scripts and other programming can be made
to interact with CSS styles, and the result can amplify CSS’s usefulness.

Extending CSS with Scripting
Script code is usually written in VBScript or JavaScript. By default, IE uses
JavaScript, although you can specify VBScript if you prefer. I prefer.

Some experts warn that VBScript is less universal than JavaScript — all
browsers can run JavaScript, but only Internet Explorer recognizes VBScript.
However, given that Internet Explorer is the browser of choice for more than
95 out of 100 Internet users, choosing VBScript seems safe enough. If you’re
concerned, though, go ahead and struggle with JavaScript. It’s more likely to
be buggy and slow to write, but you may prefer it. What do you do about
bugs? More about debugging scripts in Chapter 17.

23_584251 ch16.qxd 2/10/05 11:29 PM Page 279

280 Part IV: Advanced CSS Techniques

Here’s an example of scripting, using JavaScript:

<html>
<head>

<script type=”text/javascript” language=”JavaScript”>
<!——
function foryou() {

alert(“A message for you!”);
}
//——>
</script>

Writing for users who disable scripts
Script languages were originally designed to be
harmless to a computer (dangerous commands
like disk formatting have been stripped from
script languages). Nonetheless, virus writers,
Trojan horse authors, and other social misfits
have found ways to use script to spy on people’s
data, damage files, and so on. However, you’ve
written the script examples in this chapter, so
you can trust them and test the examples.

But what about using scripts on the Internet? So
far, most people using IE seem to be permitting
scripts, so you might be safe inserting them into
your Web pages. If, however, a browser or user
refuses to permit scripts, you should offer an
alternative to scripting. You can, if necessary,
insert a <noscript> element in your code that
is executed if your script can’t execute because
of the user’s security settings. Inside this
<noscript> element, you can include CSS
styles, text explaining what the script did, or an
<a> link they can click for additional informa-
tion: whatever you think makes your page
acceptable comprehensible and aesthetically
pleasing if your script fails to run. Here’s an
example:

<noscript>
<p>Sorry, you have configured

your browser to prohibit
scripting. If you want to
allow scripting in Internet
Explorer, adjust the set-
tings in the Tools➪Internet
Options dialog box. Click
the Security tab, and then
click the Custom Level
button and set the permis-
sions.

</noscript>
Sometimes using the <noscript> element
isn’t necessary because the script is merely
doing something visually attractive (like fading
a graphic image into the page for decoration).
You don’t need to provide an alternative for that
because presumably now that you’ve read this
book, your CSS-designed page is already gor-
geous without the added attractions offered by
animated scripted design elements. But if the
script does something essential, such as
making tiny text larger so it can be read or sim-
ulating opening a menu, you may want to
ensure that those who can’t execute scripts can
still get this important benefit via a hyperlink that
loads another page, or in some other fashion.

23_584251 ch16.qxd 2/10/05 11:29 PM Page 280

</head>

<body>

<button onclick=”foryou()”>Click me for a personal
message.</button>

</body>
</html>

If you’re sticking to Internet Explorer, you can simplify the code, thus:

<script>

function foryou() {
alert(“A message for you!”);

}

</script>

The HTML comment symbols <!-- and --> prevent some browsers from
displaying code to the user. (Nothing is commented here — using these
symbols just tricks some browsers into ignoring the code.) Comments are
never displayed, except to the programmer while writing the code. Worse,
the // symbol is a JavaScript comment mark, and you have to stick that in to
prevent JavaScript from getting confused by the HTML --> symbol! Talk about
workarounds. If I were you, I’d just leave out all these comment symbols and
not fret about it. The browsers that don’t recognize the <script> element
are so old that anyone still using them should be penalized. It may convince
them to download a free contemporary browser and join the rest of us.

JavaScript is the default language for IE, so you need not specify it in the
script block.

The CSS people want to move away from (deprecate as they call it) the ven-
erable language= attribute in favor of the far less clear type= attribute.
(C programmers, and professors of C at universities, are fond of using the
word type. They apply it here and there to all kinds of things, using it as promis-
cuously as they use the word object. And, as with object, the word type has
lost nearly any meaning it once had — it’s applied to variables, custom data
structures, arrays, and so on. Now they want to substitute type for language.
Heaven help us.)

Alternatively, you can use more easily understood, more easily programmed
VBScript, like this:

281Chapter 16: Programmatic CSS

23_584251 ch16.qxd 2/10/05 11:29 PM Page 281

<script language=”VBScript”>

function foryou

msgbox (“A message for you!”)

end function

</script>

If you want to keep your script out of the HTML and in a separate file, use the
src attribute, like this:

<script type=”text/javascript” src=”foryou.js”></script>

Ensure that your script file, in ordinary text format like from Notepad, is in
the same directory as the .htm file holding the HTML code. The script is
imported when the page is loaded, just as images are imported with the
 element.

Executing Scripts Automatically
upon Loading

In the preceding examples, the user must click a button before the script exe-
cutes. If you want the script to execute when the page first loads, just remove
the function. In VBScript, that means removing two lines (function and end
function), like this:

<script language=”VBScript”>

msgbox (“A message for you!”)

</script>

JavaScript employs braces to indicate the start and end of a procedure, so
remove both of the lines containing the braces to make a script execute when
the page first loads:

<script>

alert(“Hello, HTML world!”);

</script>

282 Part IV: Advanced CSS Techniques

23_584251 ch16.qxd 2/10/05 11:29 PM Page 282

When a Web page with script loads into the latest version of Internet Explorer
(Service Pack 2), the script won’t immediately execute. Instead, a message
appears across the top of the browser window saying, To protect your
security, Internet Explorer has restricted this file from
showing active content that could access your computer. Click
here for options. Go ahead and click here. Then choose Allow Blocked
Content from the dialog box that appears. Now another warning pops up, just
in case you were delirious or roaring drunk when you made your choice. This
second warning asks you if you’re sure. Go ahead and click Yes. Now, at long
last, you can see the effects of your script. Note that once you allow blocked
content from one Web page, any other pages you surf to are also permitted to
send blocked content. IE only resets itself after you shut it down, and then
restart it. After that, the message about blocked content once again appears
in response to an attempted script load.

You can include more than one script element in a page, but put them up
inside the <head> element.

Using the Right Tools for the Job
For small programming jobs, scripting works just fine. Scripting is program-
ming, albeit with a somewhat abbreviated language. Scripting is designed to
get past firewalls, browser security settings, and other security measures. A
script language is quite similar to its parent language (Visual Basic or Java),
but some potentially dangerous commands — mainly those that access the
hard drive, such as those that delete files — are removed from the script
language.

Unfortunately, evil-doers can still find ways to make scripting dangerous, but
Microsoft has come up with an ingenious solution: Execute your code on the
server, compose an ordinary HTML page after the computation has finished,
and send that HTML back to the user’s browser. HTML, like a television show,
cannot introduce a virus into your house. It’s the difference between seeing a
picture of someone with a cold, versus sitting next to somebody on a bus
who’s hacking and wheezing.

ASP.NET is the name Microsoft gave to this server-side code execution tech-
nique. It works quite well, allowing programmers to enjoy the full VBA, VB.NET,
or other language rather than simply scripts. For serious, complex Web pro-
gramming solutions (or what is now often called enterprise development), you
will find working with the heavy-duty tools available in the Visual Studio .NET
suite much more efficient.

283Chapter 16: Programmatic CSS

23_584251 ch16.qxd 2/10/05 11:29 PM Page 283

But for CSS work, where you want to merely react a bit to user behaviors,
make a few changes to the design of a page, or do a little animation, scripting
is quite powerful enough.

Modifying CSS Styles
through Programming

This next example shows you how to create your own effects — modifying
any style of any element (almost any style, anyway) in any way. Recall the
example from Chapter 15 that used a pseudo-class to change the color of a
link (an a element) when the user hovered their mouse over the element?

Now you’ll see how to use a bit of trick scripting to make any kind of change
you want to a style — dynamically, while your page is displayed.

Changing styles
Type this into Notepad or whatever text editor you like, or copy it from this
book’s Web site:

<html>
<head>

<script>

function changestyle(obj,sname,ch) {

var dom = document.getElementById(obj).style;
dom [sname] = ch;

}

</script>

<style>

#pfirst {

font-size: 8px;
width: 400px;

}

284 Part IV: Advanced CSS Techniques

23_584251 ch16.qxd 2/10/05 11:29 PM Page 284

</style>

</head>

<body>

<h1 id=”head1” onmouseover=

“changestyle(‘pfirst’,’fontSize’,’24px’);

changestyle(‘head1’,’color’,’green’);”

>Hover mouse here to expand.
</h1>

<p id=”pfirst”>

For small programming jobs, scripting works just fine.
Scripting is programming, albeit with a somewhat
abbreviated language. Scripting is designed to get
past firewalls, browser security settings, and
other security measures. A script language is
quite similar to its parent language (Visual Basic
or Java), but some potentially dangerous commands
— mainly hard drive access, such as file deleting
— are removed from the script language.</p>

</body>
</html>

To test this example, follow these steps:

1. Save this code to a file named scripting.htm on your hard drive, or
use another filename if you prefer.

2. Double-click that file in Internet Explorer.

The page is loaded into Internet Explorer. You see the result shown in
Figure 16-1.

3. Move your mouse pointer over the headline.

The headline immediately turns green and the paragraph of text expands
from a size of 12 pixels to 24 pixels, as you see in Figure 16-2:

285Chapter 16: Programmatic CSS

23_584251 ch16.qxd 2/10/05 11:29 PM Page 285

You see the implications. You can use HTML event attributes — such as
onclick, onmouseover, onchange, onkeypress, onfocus and so on —
to trigger changes to the CSS styles. You could drop paragraphs or lists

Figure 16-2:
After

you hover
your mouse

over the
headline,

it changes
color and

the text
increases
to a more

legible size.

Figure 16-1:
The original
appearance
of the page,
with a black

headline
and small
text in the

paragraph.

286 Part IV: Advanced CSS Techniques

23_584251 ch16.qxd 2/10/05 11:29 PM Page 286

(as illustrated in the previous example), manipulate colors, swap paragraphs
and other elements’ positions, adjust sizes and shapes and positions — what-
ever you think up.

Pay no attention to the script itself. It works, and you need not know how or
why. You don’t know how your car’s universal joint works, do you? But you
drive it nonetheless.

Just plug this script into any Web page where you want to dynamically alter
the CSS styles. All you need bother with in this script is what you feed into it
and what it then does for you:

function changestyle(obj,sname,ch) {

var dom = document.getElementById(obj).style;
dom [sname] = ch;

}

To make this work, you must provide three things, called obj, sname, and ch
in this code, but the names don’t matter. What you actually provide are the ID
name you assigned to the element (or selector if you prefer), the name of the
property you want changed, and the actual value that you want for this change.
For example, the first changestyle line changes the paragraph with the id
pfirst, changes its font-size property, and changes the font-size to 24
pixels:

<h1 id=”head1” onmouseover=
“changestyle(‘pfirst’,’fontSize’,’24px’);
changestyle(‘head1’,’color’,’green’);”
>Hover mouse here to expand.
</h1>

Java and JavaScript, like C and similar languages, are quite strict. Their unnec-
essary punctuation rules, wacky syntax, and spelling restrictions are notorious
for causing countless bugs and wasting countless people’s time. The script in
this example is yet another instance of this sad state of affairs. JavaScript is
case-sensitive. It makes a distinction between the words fontsize and
fontSize. It won’t even permit you to use the correct CSS term font-size
for this property. JavaScript allows no hyphens, and what’s more, if a word is
made of two words, like font-size, you must remove the hyphen and capi-
talize the first letter of the second word. So fontSize is the only way you can
send the font-size property to the script. If your scripts aren’t working, make
sure that the property names you’re sending to the script are correctly
capitalized.

You can send as many requests for style changes as you wish to the
changestyle function. In this example, you made two changes — one to
the size of the paragraph’s text and one to the color of the headline. But be
creative in applying this technique. Consider adding a toggle feature to the

287Chapter 16: Programmatic CSS

23_584251 ch16.qxd 2/10/05 11:29 PM Page 287

script, so that each time the user hovers the mouse, the element is restored
to its original status (see Chapter 13 for details about toggling behavior). Or
try adding a timer (see the section “Timing Things Right” later in this chap-
ter) to control the speed or timing of a style change.

Changing the rules
In this next example, you modify the style area itself. For example, say you
have a selector and style definition like this:

p {font-size: 8px; color: pink; }

When the page loads, your paragraphs are in tiny pink text. What if you want
to allow the user to change this style rule? This next line of code changes the
p rule when a user’s mouse pointer moves over this element so that the text
changes to blue and increases to a size of 18 pixels:

<h1 onmouseover=”newrule(‘p’,’font-size: 18px; color:
blue’)”>Hover here to drop

To accomplish this, first you give a style element an id of its own (yes, you
can give the style element an id). In your script, you use this id to specify
which style element you’re talking about (a page can have more than one
style element, so this is required):

<style id=”thestyles”>

Here’s the complete, working example for you to experiment with:

<html>
<head>
<script>

function newrule(selector,props) {

document.styleSheets.MyStyles.addRule(selector,props)

}

</script>

<style id=”MyStyles”>

h1 {font-size: 24pt}

288 Part IV: Advanced CSS Techniques

23_584251 ch16.qxd 2/10/05 11:29 PM Page 288

p {font-size: 8px; color: pink;}

</style>

</head>
<body>

<h1 onmouseover=”newrule(‘p’,’font-size: 18px; color:
blue’)”>Hover here to drop

text</h1>

<p>
For small programming jobs, scripting works just fine.

Scripting is programming, albeit with a somewhat
abbreviated language. Scripting is designed to get
past firewalls, browser security settings, and
other security measures.

</p>

</body>

</html>

In this example, when the user hovers the mouse over the headline, the user
triggers this onmouseover event:

<h1 onmouseover=”newrule(‘p’,’font-size: 18px; color:
blue’)”>Hover here to drop

This causes the newrule function to do its job. The items within the paren-
theses are sent by the computer to the function. First, the p is sent, identify-
ing the selector you want to change. Then the properties and values are sent
to the function as well. You can send as many as you want to send. You don’t
need to send the same number of properties as are currently in the selector’s
style definition.

The function then carries out its one job:

document.styleSheets.thestyles.addRule(selector,specs)

This changes the “rule” (to this selector, changing these properties) in this
document’s style sheets collection. Use the particular style element with the
ID thestyles.

289Chapter 16: Programmatic CSS

23_584251 ch16.qxd 2/10/05 11:29 PM Page 289

Remember, you need not understand programming to use the scripting tech-
niques described in this chapter. Just copy and paste the script element into
the <head> section, and then follow the examples to pass the correct data to
the function (as you just did with the onmouseover event in this example).
You can easily customize these examples. If you want the p selector’s text
color to change to green in this example, instead of blue, just make that
change in the code:

<h1 onmouseover=”newrule(‘p’,’font-size: 18px; color:
green’)”>Hover here to drop

Or if you want to change the properties for the headline selector rather
than the p, just make this change (shown in boldface):

<h1 onmouseover=”newrule(‘h1’,’font-size: 18px; color:
blue’)”>Hover here to drop

This doesn’t work in Firefox.

Timing Things Right
Another interesting use for scripting is to add timers to your Web pages. You
can use a timer for two purposes: to do something at a specified time (like
setting off an alarm clock at 6 AM) or to repeat something at a particular
interval (like a metronome).

Say that you want to turn a green headline blue — as in the previous
example — but instead of happening when the user hovers or clicks some-
thing, or when the page first loads, you want this event to happen a few
seconds or minutes following the page load. To do that, you use a timer.

In this sample HTML page, I switch to VBScript to create, employ, and then
destroy a timer:

<html>
<head>
<script LANGUAGE=”VBScript”>

function startTimer()
timerhandle = setTimeout(“changehead”,3000)

end function

function stopTimer()
clearTimeout(timerhandle)

end function

290 Part IV: Advanced CSS Techniques

23_584251 ch16.qxd 2/10/05 11:29 PM Page 290

function changehead()
h.style.color = “slateblue”
h.style.fontSize = “36”
end function

</script>

</head>

<body onload=”startTimer()” onunload=”stopTimer()”>

<h1 ID=”h”>Some headlines can change, all on their
own...</h1>

</body>
</html>

In this example, you first create a script with three functions. The first function,
which I named startTimer, sets the timer. It runs the function changehead:
three seconds after this timer is started. The timing can be highly precise if
you wish because it’s specified in milliseconds (a millisecond is a thousandth
of a second, so 3000 milliseconds equals three seconds):

function startTimer()
timerhandle = setTimeout(“changehead”,3000)

This startTimer function is triggered when the page is loaded, by this
onload event in the <body> element:

<body onload=”startTimer()” onunload=”stopTimer()”>

After the page is unloaded, the timer is discarded, usually a good practice
because it’s no longer needed. The onunload event does that cleanup job.

The changehead function, when triggered by the timer, modifies the color
and font size of the head with an ID of h:

function changehead()
h.style.color = “slateblue”
h.style.fontSize = “36”
end function

Cool, no? Now you can delay an effect, a filter, a transition or any other fea-
ture you want to make happen some time after the page loads. You can also
delay events for a certain amount of time after the user clicks or some other
event occurs.

291Chapter 16: Programmatic CSS

23_584251 ch16.qxd 2/10/05 11:29 PM Page 291

The important point in this example is the word changehead, which is the
name of the script function that you want executed when the timer finishes
its countdown.

Changehead (or whatever function name you choose to use) is carried
out automatically after the interval is over; three seconds in this example.
(To make something happen after a delay of one minute, you would use
60,000 milliseconds.)

Here’s what happens, blow by blow, when you load the source code from the
previous example into a browser:

1. When the page is loaded (onload), the startTimer function is executed.

2. The startTimer function specifies that after 3000 milliseconds, the
changehead function is started: timerhandle = setTimeout
(“movep”,3000).

3. After the timer counts down three seconds, the changehead function
does two things to the style of the H1 object. It changes the color and
adjusts the font size:

h.style.color = “slateblue”
h.style.fontSize = “36”

4. Notice that you can name a paragraph (or a headline or other HTML
element) by using the ID attribute, like this: <h1 ID=”h”>. Then in a
function, you can adjust that element’s properties by specifying its
name: h, or whatever ID you gave the element.

5. Finally, when the page is unloaded (onunload=”stopTimer()), the
stopTimer function uses the clearTimeout command to destroy
the timer.

Another use for delays is displaying a splash screen. You may want to show
visitors an attractive graphic screen for a few seconds before displaying your
Web site’s home page. Consider displaying a five-second splash screen to
intrigue them. Then display or fade into your real home page automatically
(the user doesn’t have to click anything — a timer does the work). To show a
splash screen, display the graphic page until a timer counts down, and then
hide that page and show your home page proper. This code shows you how
to display one image (andy.jpg on my computer) for five seconds, and then
replace that image with another named colorriot.jpg.

<html>
<head>
<script LANGUAGE=”VBScript”>

function startTimer()

292 Part IV: Advanced CSS Techniques

23_584251 ch16.qxd 2/10/05 11:29 PM Page 292

timerhandle = setTimeout(“jump”,5000)
end function

function jump()
document.location = “colorriot.jpg”
end function

function stopTimer()
clearTimeout(timerhandle)

end function

</script>
</head>

<body onload=”startTimer()” onunload=”stopTimer()”>

</body>
</html>

For the document.location value, you can provide a second .htm file if you
wish. Here’s how to load a Web page located on the root directory of c: drive
on the same computer as the one on which the first .htm file resides:

document.location = “file:///C:/cheese.htm”

Grasping countdown timers
A countdown timer (which counts down from a set value, like a kitchen
timer) is created by using the settimeout command, like this:

timerhandle = setTimeout(“movep”,3000)

You can use almost any name instead of timerhandle here (except a word
already used by VBScript, such as End or Function). However, timerhandle
seems like a good name for it. The timerhandle is just a name that’s given to
the timer when it’s created by the above line of script (when the page with
this script loads into a browser). You can later destroy this timer by using its
name, as in this line:

clearTimeout(timerhandle)

The clearTimeout command removes the timer from the computer’s memory
(destroys it, really). The clearTimeout command isn’t strictly necessary.
Generally, you can count on the computer to destroy timers that are no longer
in use. However, explicitly killing off a timer when your program is finished
using it is considered good programming practice.

293Chapter 16: Programmatic CSS

23_584251 ch16.qxd 2/10/05 11:29 PM Page 293

Employing metronome timers
To create a page where something repeats at intervals, you use the same
timer object but in a slightly different way. In the previous two timer examples,
you used the setTimout command to cause a delay, and then activated some
behavior. If you want repeating behavior, you need a metronome type of timer.
It’s created by using the setInterval command, like this:

timerhandle = setInterval (“movep”,200)

The difference between setTimeout and setInterval is that with
setInterval, the function (movep, in this next example) is executed
repeatedly instead of executed only once. Here’s an example.

<html>
<head>

<script LANGUAGE=”VBScript”>

dim toggle

function startTimer()
timerhandle = setInterval(“movep”,100)

end function

function stopTimer()
clearTimeout(timerhandle)

end function

function movep()

toggle = not toggle

if toggle then
para.style.color = “slateblue”

else
para.style.color = “black”

end if

end function

</script>
</head>

<body onload=”startTimer()” onunload=”stopTimer()”>

<p ID=”para” style=”font-size: 24px;”>This text vibrates a
little bit!</p>

</body>
</html>

294 Part IV: Advanced CSS Techniques

23_584251 ch16.qxd 2/10/05 11:29 PM Page 294

Here the timer goes off at intervals of 100 milliseconds (ten times a second)
because until the page unloads, you don’t use the stopTimer function — and
also because you continually re-execute the movep function. This function
changes the text’s font color from black and blue and back again, creating a
subtle, but disturbing, throbbing quality. Don’t stare at it too long or you
might freak yourself out.

The following list shows the major events that happen as you run the preced-
ing code example:

1. When a Web page contains a section of script, any lines of program-
ming that aren’t enclosed in a Function. . . End Function
(or Sub . . . End function) are executed immediately when the
page loads.

In other words, in the preceding example, the line dim toggle is outside
any Function or Sub. Therefore, the variable toggle is created when this
page first loads into a browser. (The dim command creates a variable.)

The main value of using the dim command to create a variable outside
of any Function or Sub is that the variable can then be used by all the
Functions and Subs anywhere in the current Web page. (Variables cre-
ated within a Function or Sub can be used only by other lines of source
code within that single Function or Sub.)

In this example, you wanted to have a variable, toggle, that could hold
information no matter what function was, or was not, currently executing.
Because you create toggle outside the Functions, it can hold the infor-
mation you give it as long as this page remains in the browser.

2. When the startTimer function is executed (with the body onload
command), the browser is told to execute the movep function every
80 milliseconds.

Note that this execution happens quite often because 1000 milliseconds
is one second.

3. The meat of this program is in the movep function. The line toggle =
not toggle is like flipping a light switch.

If the variable toggle was true, it becomes false when you use the not
command. If it was false, it becomes true.

4. The variable toggle is tested. If it’s true (if toggle then), the para-
graph is displayed blue. If toggle is false (else), the paragraph turns
black.

5. The movep function continues to toggle on and off, quite rapidly, until
the stopTimer function is executed when the browser unloads this
page, triggering the onunload=”stopTimer()” command.

You can find lots of scripts ready to copy and paste on the Internet. Consult
some of the resources listed in Chapters 18 and 19.

295Chapter 16: Programmatic CSS

23_584251 ch16.qxd 2/10/05 11:29 PM Page 295

296 Part IV: Advanced CSS Techniques

23_584251 ch16.qxd 2/10/05 11:29 PM Page 296

Chapter 17

Testing and Debugging
In This Chapter
� When punctuation goes bad

� Handling browser compatibility problems

� Debugging CSS

� Validating HTML

Debugging, validating, parsing: Whatever you call it, at one time or
another, you’ll need to figure out what’s going wrong. This chapter

shows you techniques and introduces you to free tools that help you fix
errors in your CSS and HTML code and double-check your Web page before
you put it up on the Internet for all to see.

Checking Punctuation
The single best advice for those times when your CSS code isn’t working is to
check your punctuation. Unfortunately, CSS was designed to include several
punctuations derived from the C-type computer languages. This means that you
have to use braces, colons, and semicolons where more sensible punctuation —
or no punctuation at all — would have worked just fine.

For example, take a look at the punctuation in this typical CSS style:

<html>
<head>

<style>

img {
border: silver outset;
border-width:16px;}

24_584251 ch17.qxd 2/10/05 11:32 PM Page 297

</style>

</head>
<body>

</body>
</html>

Everyone has gotten accustomed to HTML’s perfectly serviceable punctua-
tion techniques for years. For a property (such as the width attribute), you
use the equals sign (=) to separate the property name (width) from the value
that you assign to that property (320px, in the sample code above). If more
than one property is present, they’re separated by simple spaces, just like
words in an ordinary sentence: width height src, and so on. The entire
element is enclosed in < > symbols. Everyone is used to this punctuation
and knows exactly how it works. It’s clear, clean, and effective.

Then along comes CSS with the decision to replace greater-than (>)and less-
than (<) symbols with the braces {} as a way of enclosing each style. Why
couldn’t they have made everyone’s life simpler and just stuck to the tradi-
tional, well-established <> symbols? By changing the rules, they introduced
lots of confusion and bugs. People who write CSS code now have to keep
making mental notes and switching between HTML and CSS punctuation
when writing the same fundamental grammatical structures of properties and
their values. Also, you can no longer simply copy an HTML element with all
its attributes, and then paste it into a CSS style rule. That would have been
too convenient, too efficient.

What’s more, HTML uses an equals sign to separate each property from its
value. This is traditional, classic computer programming punctuation that
has been in use for decades. Along come the wise ones at CSS and decide to
make up some funny, unique trick of their own. Perhaps someone in some
meeting said, “Hey, everyone understands and uses the equals sign. Let’s stir
things up and cause lots of bugs by making them use a colon in CSS code to
separate a property from its value (border: silver). That way, two differ-
ent punctuation styles are used for the same thing. Programmers and design-
ers will keep getting them mixed up and have to waste a lot of time debugging
their Web pages!” If I ever meet this joker, I’ll have a few choice words for him
or her.

Finally, HTML sensibly separated property/value pairs with spaces, like this:

width=320px height=264px

298 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 298

Note the space separating 320px from height in the preceding code example.
Well, the spaces were replaced by the wise CSS designers. With what? With
semicolons. The only reason I can think of for this casually malicious and
entirely unnecessary complication is that in C-languages such as Java, beloved
by academics, logical lines of code are separated by semicolons. Other than
that usage (which is a different context completely), I can find no evidence
that introducing a new, and bizarre, way of delimiting property/value pairs has
any explanation at all. I’d sure like to hear from the comedian who first pro-
posed this terrible idea. Maybe it was the same trickster who decided to sepa-
rate properties from their values with colons.

To my mind, simply using the same punctuation for CSS styles that everyone
was accustomed to from HTML would have made much more sense. That
way, designers and programmers wouldn’t have to keep switching mentally
between the two techniques. A CSS style should be — but alas isn’t — punc-
tuated like HTML. It would look like this:

If you’re concerned that the computer might get confused because outset
and border-width don’t have a semicolon between them, don’t worry
about it. The computer is perfectly capable of parsing such code. It has no
trouble recognizing the difference between a value and a property name. Or if
you’re concerned that this line is less readable by us humans, just break the
line into two lines, like this, in your code (the computer won’t care):

<img border=silver outset
border-width=16px>

Problem solved. Or so it would seem. Actually, in the real world, everyone has
to accept that the CSS committee people decided to employ two punctuation
systems operating side-by-side on the same information. One system only
works in a CSS style, and other in HTML code. The more you work with CSS,
the more often you’ll find that your bugs result from simple punctuation mis-
takes that are hard to see. The real mystery is why this harebrained state of
affairs was decided upon in the first place.

I cover this punctuation issue in depth here for two reasons. First, if I don’t
talk about it, I might go barking mad from sheer frustration. Second, demon-
strating all the ways that CSS punctuation differs from HTML punctuation
alerts you to the various traps you can fall into when writing a CSS rule. You
now know all the differences in the punctuation where to look most of the
time when your CSS styles don’t work as you expect.

299Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 299

Like it or not, designers and programmers must wrestle with the reality that
CSS is less clear and efficient than it could have been. What you’re faced with
when writing CSS is the need to always stay on your toes. And — given the gen-
eral lack of effective HTML and CSS code debugging messages — when your
Web page doesn’t work as expected after you load it into Internet Explorer, you
should first check the punctuation. Punctuation gone awry is the source of
most errors in CSS. Ensure that your open and close braces are in place, that
you have semicolons and colons in the right places, and that you’ve not left off
something else such as a close tag (such as using <script> but forgetting to
insert the closing </script>, for instance).

Also, some experts suggest that you always write your styles the same way,
so you get into the habit of including everything. One approach is to start
each rule by first typing in the opening and closing braces {}. Then type each
property and its ending semicolon. Finally, fill in the value for each property.
This approach works for some people, cutting down on some errors. But
common sources of errors, such as last-minute tweaking, aren’t prevented by
this technique.

Validating Your Work
Ensuring that your CSS or HTML code has no problems is called validating.
This process can assist you in locating actual bugs and can also provide
other useful information. For example, validation can warn you that you’re
using “nonstandard” HTML tags or other features that work in Internet Explorer
but might not always be supported in future versions or that may not work in
other browsers such as Netscape.

300 Part IV: Advanced CSS Techniques

Of rebates and punctuation insanity
Yes, the punctuation madness is baffling, but I
sometimes wonder if it isn’t meant to be that
way, like one of life’s other little inefficiencies,
rebates. Somebody is making a buck off the
confusion. You buy because the price is low but
then forget to send in the rebate card. Experts
say that more than $500 million in rebates are
unclaimed every year.

You can see why companies deliberately intro-
duce all kinds of hassles into the rebate
process: due dates in fine print (rebate ended
last year), you left out one of the required items,
you bought two and the rebate only works for

one (fine print again), you accidentally damaged
the bar code, and so on.

I suspect that at least some of the annoying and
inefficient aspects of computer programming
languages fall into this same category: deliber-
ate confusion is designed into the “code” dic-
tion, punctuation, and syntax to preserve the
jobs of people who program or teach program-
ming. After all, if programming were straight-
forward, they couldn’t sell their services.
Everybody could tell computers how to behave,
not just the elite.

24_584251 ch17.qxd 2/10/05 11:32 PM Page 300

Ignoring Fringe Browsers
As I’ve mentioned elsewhere in this book, to me, Netscape and the other
fringe browsers are of negligible impact on my programming because so few
people use them. Internet Explorer is the standard — it won the browser
wars. So I’m a bit puzzled why other books on CSS and HTML spend 30 per-
cent of their time worrying about how to ensure compatibility with, for exam-
ple, Netscape 4 (which probably nobody still uses) or Opera and the rest.
You should see some of the multiple if . . . else complexity in some
scripts — attempting to accommodate every last possible browser variation.
Rather than spend lots of time on these minor compatibility issues, I’ve
instead used the space saved to explore and demonstrate additional CSS fea-
tures and capabilities.

Going back in time
You’ll even find books including elaborate lists showing whether each CSS
element, property, and value works with every browser, along with every
version of every browser.

Who wants to go for the lowest common denominator? Why bother with
browsers that are years old and whom nobody in their right mind is still
using?

If you take compatibility issues to extreme, you have to avoid using CSS itself!
For example, if you want to be sure that your Web page works on every possi-
ble device from PDAs to refrigerator doors with Internet LCDs, you must
entirely avoid CSS. You have to use HTML version 3.2, and it doesn’t include
style sheets at all.

Most browsers are free for the download. So if somebody is still using an
ancient version, they’ve got many more computing problems to wrestle with
than seeing text in the wrong place on your Web page. My advice: Write and
test your Web pages for Internet Explorer and you’ll be just fine.

What if you must consider compatibility?
I do, however, realize that some designers must, for various reasons, take
into account alternative browsers and older versions. If that describes you,
I think you’ll find most all the information on CSS in this book is still of use to
you. It’s merely that after designing your Web page, you have an extra step to
take: Run the page through a validator, or, better yet, load it into Firefox, or
Netscape 4, or whatever browsers you’re worried about. You’ll immediately
see what, if anything, needs to be adjusted or worked around.

301Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 301

Only one version of IE at a time can be installed on a Windows computer.

Checking compatibility charts
You can find online compatibility lists and charts detailing browser compati-
bility for all CSS properties and other features. Here are some resources:

www.corecss.com/properties/full-chart.php
www.westciv.com/style_master/academy/browser_support/basic_

concepts.html
www.quirksmode.org/css/contents.html
css.nu/faq/ciwas-mFAQ.html

To test how your Web page looks in a browser that doesn’t support your CSS
formatting styles, follow these steps

1. Choose Tools➪Internet Options in Internet Explorer.

The Internet Options dialog box opens.

2. Click the Accessibility button.

The Accessibility dialog box opens.

3. Check the various checkboxes under Formatting, particularly the Font
Styles box.

4. Click OK twice.

The dialog boxes close and you see your Web pages without the dese-
lected CSS formatting.

Sniffing browsers
Browsers are divided into two primary categories: uplevel and downlevel.
Downlevel means that they support HTML 3.2 (no scripts, no CSS). Uplevel
browsers support HTML 4.0 and later, and consequently they can also handle
JavaScript 1.2 and CSS.

Experts suggest several solutions to handling browser incompatibilities, none
of them entirely successful. You can provide a splash screen or special page
that you show users before you show them your home page. On this page are
links to alternative home pages that, for example, don’t rely on CSS if the user’s
browser doesn’t support it. However, who wants to put Internet Explorer users,
who make up 95 out of the 100 visitors to your site, through this little quiz?
Also, nothing’s to stop other sites or search engines from providing links to
your actual home page and just bypassing the quiz page.

302 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 302

A better solution is to automate the process. Have your page execute a little
script when the user loads the page to test which browser and which version
the user has. Then your page can make either dynamic adjustments to the
styles (described in Chapter 16), display a warning to the user, or redirect
their browser automatically to your non-CSS, or otherwise lower-grade, pages.

Such scripts are called browser sniffers. As with all scripts, they work only if
the user hasn’t disabled scripting in their browser security settings. If you
want to experiment with sniffers, start here where you’ll find additional
details and working sniffers:

www.webreference.com/tools/browser/

Forcing users to upgrade
If you want to severely discipline any wayward visitors to your site using
weak or outdated browsers, you can use what’s called a DOM (document
object model) sniffer. If they are using a browser that’s not up to your stan-
dards (in other words, if your page won’t look the way you like in their bad
browser), tell them to upgrade. You redirect them to this location:

www.webstandards.org/upgrade/

There they are told why they should, if possible, upgrade, and to which
browsers and versions. The site contains links to allow the user to download
browser versions that are CSS-compliant, including IE v6 (v5 for Mac users),
Netscape v7, Firefox, Galeon, Opera v7, Safari, and Konqueror.

If you want to take this approach and redirect the user, insert this script into
the <head> section of your Web page:

<script>

<!-- //

if (!document.getElementById) {
window.location = “http://www.webstandards.org/upgrade/”

}

// -->
</script>

By using the window.location = command, you force the user’s browser to
the Internet page specified in quotation marks. The user doesn’t click a link;
the browser just automatically avoids displaying your Web page and instead
displays, in this example, the Web Standards Project’s page.

303Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 303

Trying Out the W3C Validator
W3C — the World Wide Web Consortium (W times 3, get it?) — offers a way
to test your Web pages’ HTML and CSS code. However, the W3C offers debug-
ging utilities (they call them validators) that are so strict and exacting that
you might want to consider alternative utilities.

Before you even resort to a professional utility, I suggest you first try to locate
errors in your code by yourself. Not only do you find the problem fairly often,
but this approach helps your to remember what to watch out for (what your
personal boo-boos often are). Also, a validator tends to give you more infor-
mation than you want. It might tell you not just what doesn’t work, but also
what doesn’t work in some obscure browser, or what might not work in the
future. It also makes quite a few “recommendations,” like telling you that you
should provide a generic font family just in case somebody doesn’t have the
one you’re expecting.

To look at the validator, go to the main W3C page:

www.w3.org/

and click the Validators hyperlink. Alternatively, go directly here (this address
was correct at the time of this writing, but may change):

http://jigsaw.w3.org/css-validator/

You can test your page three ways:

� Provide the validator with the URI (address) of the Web page or pure
CSS external style file.

� Upload the code file (this is only for CSS files).

� Copy and paste the CSS code directly into the W3C Web page.

You’re probably familiar with the term URL (Uniform Resource Locator), but
the good folks at W3C call it instead a URI (Uniform Resource Identifier).
They have their technical reasons for doing this.

Try the second validation approach (specifying a .css file on your hard drive
to be uploaded for validation) by following these steps:

1. From this book’s Web site, copy this code:

p
{
color: green;
text-align: center;
font-family: arial!Important;

304 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 304

font-size:18.0pt!Important
}

h1, h2
{
font-family: ravie!Important;
font-style: normal!Important
text-align: center;
}

2. Paste the code into Notepad.

3. Choose File➪Save As in Notepad.

The Save dialog box opens.

4. Click the down arrow symbol to change the Save As Type list box
from Text Documents (*.txt) to All Files.

5. Type in myfirst.css as the file name.

6. Click the down arrow symbol in the Save in list box at the top of the
dialog box.

A list is displayed, showing various locations in your hard drive.

7. Navigate through the list to locate the c: drive (the main root direc-
tory of c:)

8. Click the c:.

Your save now puts this file on c:.

9. Click the Save button.

The file myfirst.css is now located on c:.

To test this CSS code, all you have to do now is to follow these steps:

1. Open this CSS test page at

http://jigsaw.w3.org/css-validator/

2. Find the section on that Web page titled Validate by Upload.

3. Click the Browse button on the Web page.

A Choose File dialog box opens.

4. Navigate to locate your file at c:\myfirst.css.

5. Double-click c:\myfirst.css in the dialog box.

The dialog box closes and your file’s address is now displayed in the
Local CSS File text box on the Web page.

305Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 305

6. Click the Check button on the Web page.

You then see a report on the errors and the overall compliance of your
CSS code. As an example, I got these results from the validator:

W3C CSS Validator Results for file://localhost/C:\MyFirst.css
To work as intended, your CSS style sheet needs a correct

document parse tree. This means you should use
valid HTML.

Errors
URI : file://localhost/C:\MyFirst.css
Line: 13 Context : h1 , h2
Parse Error - text-align: center;
Line: 14 Context : h1 , h2
Parse error - Unrecognized : }

Warnings
URI : file://localhost/C:\MyFirst.css

Line : 5 font-family: You are encouraged to offer a generic
family as a last alternative

Line : 11 font-family: You are encouraged to offer a generic
family as a last alternative

Valid CSS information

p {
color : blue;
text-align : center;
font-family : arial !important;
font-size : 18pt !important;
}

Whew!

Do you see why the validator claims to have found an error in the h1, h2
selector rule? The rule does contain an error, but the validator can’t be spe-
cific about what the error is or even precisely where. Here’s the validator’s
error message:

Line: 13 Context : h1 , h2
Parse Error - text-align: center;

Line: 14 Context : h1 , h2
Parse error - Unrecognized : }

The validator appears to have a problem with text-align: center;, but
that code actually works just fine — it’s not an error at all. Likewise, the val-
idator says it doesn’t recognize the colon and brace, whatever that means.

306 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 306

Hoping for helpful error messages
A really helpful error message would say specifically what the error is and
where it’s located. Finding the location of the error is often the biggest prob-
lem when debugging code.

At least the parser is correctly informing you that an error exists in either line
13, line 14, or both. That’s useful information, but actually the error is not in
either of these lines — just near them. The validator should be able to report
the precise location, specify the error itself, and provide a suggested cure. That
would be a truly helpful debugging utility.

The error in this code is common in languages like C and Java, and, thanks to
the CSS committees, it’s now unnecessarily common in CSS. A good error
message would be specific, like this:

Line 12 is missing an ending semicolon:

font-style: normal!Important

To fix this error, add a semicolon to the end of this line,
like this:

font-style: normal!Important;

Perhaps there’s hope that one day that the validator (debugger) and the
debuggers for other languages can actually be precise about a problem and
offer a suggested cure. (JavaScript is pretty weak in this area too, and most
languages have vague error messages and often point to the wrong location
in the code.)

In any case, if you add the semicolon to the line in the .css file and then rerun
the validation, you get this result (no error section this time):

W3C CSS Validator Results for file://localhost/C:\MyFirst.css
To work as intended, your CSS style sheet needs a correct

document parse tree. This means you should use
valid HTML.

Warnings
URI : file://localhost/C:\MyFirst.css

Line : 5 font-family: You are encouraged to offer a generic
family as a last alternative

Line : 11 font-family: You are encouraged to offer a generic
family as a last alternative

307Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 307

Valid CSS information

p {
color : green;
text-align : center;
font-family : arial !important;
font-size : 18pt !important;
}

h1 , h2 {
font-family : ravie !important;
font-style : normal !important;
text-align : center;
}

This time through the validator, the H1, H2 section has been moved down from
the error zone into the valid zone (meaning the code now passes their tests).

When the validator issues a warning, that’s less severe than an error. A warn-
ing just means that your code might not work universally on all past and
future devices, including browsers from 1995 or Internet screens built into
refrigerator doors. A warning means, well, your code does work in Internet
Explorer, but you really should give a default font family, just in case Arial
ever gets replaced by something else and you want to ensure that the font
remains sans serif. Big freakin’ deal.

Did that comment about a “correct document” send chills down your spine?
The validator always displays the comment To work as intended, your
CSS style sheet needs a correct document parse tree. This
means you should use valid HTML. Actually, you can just ignore it. It’s
always there as a scold to hector you. Your HTML may well not have anything
wrong with it — they’re just telling you to check it. For more on that, see the
section later in this chapter titled “Validating HTML.”

Identifying property value problems
What kind of error message do you get if you try to use a value that can’t work
with a particular property — such as assigning 12px to the color property?

If you feed this CSS code to the validator:

p
{
color: 12px;
text-align: center;
}

308 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 308

You get this excellent answer — both specific and accurate about the location:

Line: 3 Context : p
Invalid number : color 12px is not a color value : 12px

So you see, the validator can come through when it really wants to. And, cer-
tainly, validating your CSS code is most useful in two situations:

� When you’ve tried reading through the code to debug it, but cannot
find the reason why your Web page is misbehaving or a style isn’t
working. (The default black headline style appears, even though you’re
trying to turn it green, for example.)

� Just before you’re ready to publish your Web page on the Internet for
all to see. You want to find out whether any errors have slipped through.

Run your code through an HTML parser to ensure that you don’t have an
nasty surprises in that part of your Web page code either.

Sometimes, in the warning section, you’ll find a valuable suggestion. Consider
this possibility: You neglected to specify a background color for one of your
paragraphs of text. You did specify that the foreground (the text characters
themselves) should be dark green, and you assumed that the background
would remain the default white. But what about those people who’ve got
their own user style sheets turned on or are otherwise customizing their
browser’s behaviors and display characteristics? What if one of them has set
the background to a color that makes your dark green text pretty much
unreadable? The warning section of the validation report makes suggestions
about this kind of problem, and even if you ignore many of those suggestions,
at least you’re able to consider them and make an informed decision.

Validating HTML
HTML errors can sometimes cause CSS errors. And, of course, your Web page
is made up of both CSS and HTML, so you do need to test both types of code.
Fortunately, many HTML parsers (utilities that read through code to see if tag
pairs are matched, and so on) are available. Parser, validator, and debugger
are just synonyms for the same idea: letting you know whether your code
contains problems, potential (warnings) or real (errors).

I suggest you find a parser that’s a bit less — shall I say, authoritarian — than
the one offered by W3C. It criticizes lots of HTML code that works perfectly
well in Internet Explorer. However, if you want to get the full rigorous treat-
ment, here’s how to get a reading from W3C’s HTML debugger.

309Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 309

Just as CSS has had several versions, so too has HTML. To use the W3C valida-
tor, you must specify at the top of an HTML document which version you’re
using before validating it. That way, the validator knows how to analyze your
code. Declare your documents as HTML-4 compliant. (HTML 3 doesn’t allow
span, ID, style, or class attributes, among other shortcomings.) You’d really
cramp your CSS styles if these attributes are missing, right? And if you’ve got
them in your code, the HTML validator lists them as errors unless you specify
HTML-4.

Go to this address for the HTML validator:

http://validator.w3.org/

If your Web page is already on the Internet, you can validate it by giving its
URL (or URI, as the W3C calls it) address. The information that appears in the
Address field of Internet Explorer when you visit a Web page is its URL.

If you’re still working on your page and haven’t published it yet, you can
browse to an .htm file on your hard drive, just as you browsed to a .css file
in the example earlier in this chapter of CSS validation.

Meeting some requirements
The HTML validator wants to know two things about your document: which
version of HTML are you using (4 is the right answer) and which flavor (strict,
transitional, or frameset). Strict means you aren’t using any questionable or
recently deprecated HTML code (code that’s frowned-upon or intended for
eventual replacement). Transitional means you’re using some of the deprecated
tags. If you want to include framesets, you have to specify that flavor. I suggest
you use the loose transitional or frameset flavor. Here’s what you should insert
at the top of your .htm file (above the <html> tag):

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

As you know after trying the various examples in this book, the browser
doesn’t care about the doctype “declaration” info. Some validators,
though, do.

For a way to use !DOCTYPE to force IE (or other browsers) to be CSS
standards-compliant, see Chapter 11, or take a look at this online discussion:

http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/dnie60/html/cssenhancements.asp

310 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 310

Test the W3C HTML validation now by following these steps:

1. From this book’s Web page, copy this code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<style>

body { margin-top: 20px; color: lightgray;}

</style>

</head>

<body>

<P>This is paragraph one.</P>

</body>
</html>

2. Paste the code into Notepad.

3. Choose File➪Save As in Notepad.

A Save dialog box opens.

4. Click the down arrow symbol to change the Save As Type list box
from Text Documents (*.txt) to All Files.

5. Type in myfirst.htm as the filename.

6. Click the down arrow symbol next to the Save in list box.

A list displays various locations on your hard drive.

7. Navigate through the list to locate the c: drive (the main root direc-
tory of c:).

8. Click the c:.

Your save now puts this file on the c: drive.

9. Click the Save button.

The file myfirst.htm is now located on c:.

311Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 311

Now follow these steps to validate this HTML code:

1. Open this HTML validation page at

http://validator.w3.org/

2. Find the section on that Web page titled Validate by File Upload.

3. Click the Browse button on the Web page.

A Choose File dialog box opens.

4. Navigate to locate your file at c:\myfirst.htm.

5. Double-click c:\myfirst.htm in the dialog box.

The dialog box closes. Your file’s address is now displayed in the Local
File text box on the Web page.

6. Click the Check button on the Web page.

You then see a report on the errors in, and warnings about, your HTML
code.

The debugger might complain that you’re sending ordinary text (text/plain)
and it doesn’t support plain text. Whatever. If you’re determined to use this
debugger, you can fiddle around with IIS or IE to try to specify a text/html
MIME Content-Type value. Getting into all this is beyond the scope of this
book. I tried using IE in a different computer and the W3C site accepted that
.html file and parsed it.

Here’s a shortcut: Try downloading Mozilla Firefox. It’s free and the W3C
debugger seems to find it more congenial. So if you experience problems
using IE to send files to the validator, try Firefox.

Using Firefox, I managed to get a report from the debugger. It said that char-
acter encoding was missing (it almost always seems to say that) and that my
page was not valid HTML 4.01 transitional (it almost always seems to say
that, too).

As for errors in my code, the validator said that line 7 (<style>) needed a
type to be specified (the type attribute is required, it said). It also com-
plained about a missing end tag in line 13 for the head element, even though
a </head> end tag is present. I assume that this is likely to be a side-effect
because of the problem it sees with the <style> element. Browsers seem to
have no problems with this simple HTML page, but the validator did. I tried
providing the type attribute that it requested:

<style type=”text/css”>

312 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 312

Then I ran the page through the validator again (using Firefox). This time, it
didn’t find fault with the style element, but it still complained about that
“missing” </head> end tag. Not willing to let this validator get the best of me,
I then ran an .html file that I knew to be “fully compliant” through it and sure
enough, it passed. This other file got this blessing from the validator: The
uploaded file was tentatively found to be valid. A victory! Well,
not a complete victory because it’s just tentatively valid.

So I tried deleting various elements near the <head> element to see if remov-
ing something would trigger the same error message about the <head> end
tag. Eureka! It’s this:

<title>My Title</title>

If you omit the title element (optional, I always thought, because browsers
don’t care about it), the validator tells you that you’re missing a head ele-
ment. Well, that’s not what’s missing, but at least after some experimentation,
I was able to satisfy the validator and get its tentative approval with the fol-
lowing change to the code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>
<head>

<title>Some Supposedly Optional Title</title>

<style type=”text/css”>

body { margin-top: 25px; margin-bottom: 25px; margin-left:
25px; margin-right: 25px; }

</style>

</head>

<body>

<P>This is paragraph one.</P>

</body>
</html>

313Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 313

Firefox offers some excellent developer extensions. You can easily download
them by selecting Tools➪Extensions, and then clicking the Get More
Extensions link. You’re taken to this page:

https://addons.update.mozilla.org/extensions/?application={ec
8030f7-c20a-464f-9b0e-13a3a9e97384}

One very popular extension is Web Developer, which adds a menu and a tool-
bar that offer the Web designer and programmer lots of useful extra features
for both designing and debugging. One word of caution though about down-
loading extensions: These are executables, so they can easily contain viruses
or other damaging code. To me, the safe approach is to avoid downloading
the latest, newest extensions (which by definition haven’t yet been proven
safe because few people have tried them out). On the other hand, popular,
classic extensions like Web Developer are pretty much guaranteed safe. If an
extension such as Web Developer posed a problem, you would hear about it
pretty quickly in the computer press.

Finding a better bug trap
Some people like the strictness of the “official” validator, with its stern insis-
tence on the most meticulous code. It’s just not me (nor is it Microsoft, thank
goodness). I got tired of that kind of infinite attention to inconsequential
detail in graduate school. The further I went up the academic ladder, the nar-
rower the focus. Some people thrive in this environment (take a look at any
academic journal to see the kind of writing it produces — sometimes there
are more footnotes than article text).

If you’re like me, you may find this validator more trouble than it’s worth.
Happily, others are available. You can use the facilities built into Microsoft’s
Visual Studio, or try the Web Design Group’s (WDG) CSS and HTML valida-
tors. I’ve found them to be more flexible and friendly that the W3C utilities.
Go here for the WDG HTML validation:

http://www.htmlhelp.com/tools/validator/upload.html

Or simply Google for CSS validator or HTML validator to find other good
debugging utilities.

314 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 314

Debugging Script
Debugging programming is quite a bit more complex than debugging HTML
or CSS code. In script, the possible side effects and complex interactions
between program elements are much more extensive than between elements
and attributes in markup languages like CSS and HTML.

Explaining how to debug programming code is quite beyond the scope of this
book, not to mention rather off the topic. However, I do give you a few point-
ers in Chapter 18.

315Chapter 17: Testing and Debugging

24_584251 ch17.qxd 2/10/05 11:32 PM Page 315

316 Part IV: Advanced CSS Techniques

24_584251 ch17.qxd 2/10/05 11:32 PM Page 316

Part V
The Part of Tens

25_584251 pt05.qxd 2/10/05 11:30 PM Page 317

In this part . . .

This part is called The Part of Tens, after a mystic
ritual performed once every 89 years on the island of

Samnos, involving three large fish, green ribbons, and a
goat. You really don’t want to know. Actually, Part V is
called The Part of Tens because both chapters in this part
have ten items in them. Get it?

Anyway, Chapter 18 gives you some of the most important
tips that a CSS designer needs to know: Things like watch-
ing out for invisible borders, taking care to prevent color
clash, debugging scripts, how to braise carrots, and other
hot tips. (Actually, this chapter has eleven tips because
the carrot recipe is a tad off-topic.)

Chapter 19 is a catch-all of items that I wanted to tell you
about, but couldn’t find a good place for in the rest of the
book. Some of the topics covered in this chapter include
layering, visiting the official CSS site, upgrading HTML to
CSS, and several good online resources, in the unlikely
event that you come up with a question not answered in
this book.

25_584251 pt05.qxd 2/10/05 11:30 PM Page 318

Chapter 18

Ten Great CSS Tips and Tricks
In This Chapter
� Avoiding changing the default font size

� Watching out for invisible borders

� Taking care to prevent color clash

� Centering redux

� Blurring effects

� Debugging your scripts

� Finding CSS resources

� Customizing bullet graphics

� Importing graphics from multiple locations

� Combining classes

� Glazing carrots: a bonus tip

Lotsa tips are scattered throughout this book. But, what the heck! Here
are some more.

Letting Users Control Font Size
Try to avoid specifying the body font size. Don’t do this, for example:

body {font-size: 24px;}

I used this code in Chapter 15 and similar code elsewhere throughout this
book. I’m changing the body font size from whatever is set as the default in
the browser to 24 pixels. Don’t do it. People have set their browser’s options
to a text size that’s readable for them. You don’t know whether they’ve got a
pixel resolution of 1680x1050 or 800x600 pixels. It makes a difference. The
user should be the one to decide this issue, not you. Why did I do it in this
book? Because it is a book. At default font sizes, screen shots used for the fig-
ures in this book wouldn’t be readable, so I sometimes boosted the body text
size to make it possible for the readers to see what I’m talking about.

26_584251 ch18.qxd 2/10/05 11:32 PM Page 319

Making Sure Your Borders Show Up
Here’s a common head CSS programming head-scratcher:

p {border: 12px;}

In spite of this rule that you wrote, no border shows up around the paragraphs.
You’d logically think that by specifying a border size, you’d see a border. Not
so. Unless you also specify a border style, you don’t get a border. The default
style is none, so change it to include a style:

p {border: solid 12px;}

Watching Out for Color Clash
What if you specify a text color, but fail to specify a background color? Sounds
harmless, but it can be a problem. Some users employ personal style sheets,
including their favorite colors. What happens if a user specifies brown for their
backgrounds and white for their text? Say that you specify brown for your text:

BODY {color: brown;}

The user won’t see your text at all because their background color and your
foreground (text) color are identical. The solution? Always specify a back-
ground if you’re going to color the text. Then you have control over how the
text looks against that background:

BODY {color: brown; background-color: yellow;}

Centering for Everyone
Centering elements on a Web page still isn’t quite solved. It’s a common
enough task — you want some things centered on the page, such as certain
kinds of titles and headlines. But how to do it?

One method is to put an element inside a div, and then center the div
(this works in Netscape or Mozilla or Firefox and so on, but not in Internet
Explorer). Setting a div’s margin to zero and auto, you effectively center it
in all browsers except IE:

320 Part V: The Part of Tens

26_584251 ch18.qxd 2/10/05 11:32 PM Page 320

<div style=”width: 400px; background-color: lightblue;
padding: 4px; margin: 0px auto;”>

To center something in IE, you can use text-align=center (which is
frowned upon by non-IE types):

<div style=”text-align:center;”>

The solution? Make everybody happy by wrapping a div with the 0px auto
inside another div with text-align set to center, like this:

<html>
<head>

<style>
</style>

</head>
<body>

<div style=”text-align:center;”>

<div style=”background-color: lightblue; width: 400px;
padding: 4px; margin: 0px auto;”>

<p>HERE I am...

</div></div>

</body>
</html>

Timing Blurring and Other Effects
Combine timers, scripting, and filters to create lots of dynamic visual effects.
Try this cool effect in Internet Explorer:

<html>
<head>
<script LANGUAGE=”VBScript”>

dim counter

function startTimer()
timerhandle = setInterval(“sizeit”,130)

end function

321Chapter 18: Ten Great CSS Tips and Tricks

26_584251 ch18.qxd 2/10/05 11:32 PM Page 321

function stopTimer()
clearTimeout(timerhandle)

end function

function sizeit()
counter = counter + 1
if counter > 49 then counter = 1
n = “blur(add=1, direction=125, strength=” & counter & “)”
divider.style.filter= n
end function
</script>

<style>

div {position: absolute; filter: blur(add=1, direction=15,
strength=90”;}

</style>

</head>

<body onload=”startTimer()” onunload=”stopTimer()”>

<div id=”divider”>
<h1>This is a blur effect over time.</h1>
</div>
</body>
</html>

See an example of this effect in Figure 18-1. For more details on how to create
these various effects, see Chapter 16.

Try varying the speed of the filter by adjusting the value 130 in this line:

timerhandle = setInterval(“sizeit”,130)

Figure 18-1:
Imagine

this effect
moving, as if
the shadow
were slowly

growing.

322 Part V: The Part of Tens

26_584251 ch18.qxd 2/10/05 11:32 PM Page 322

Debugging Script
Script and code-behind programming such as ASP.NET are such an important
aspect of Web programming that you may want to know how to set breakpoints
and otherwise debug scripts. Your best bet for IE work is to download the
Microsoft script debugger from this location:

http://msdn.microsoft.com/library/default.asp?url=/downloads/
list/webdev.asp

After you’ve installed it, you can turn it on while in Internet Explorer by
choosing View ➪ Script Debugger ➪ Open. You then see the debugger
(it works with both VBScript and JScript), as shown in Figure 18-2:

To ensure that the debugger works, follow these steps:

1. In Internet Explorer, choose Tools➪Internet Options.

The Internet Options dialog box opens.

2. Click the Advanced tab.

3. Scroll down the Settings list box until you locate the Browsing section.

4. Uncheck the following two boxes: Disable Script Debugging (Internet
Explorer) and Disable Script Debugging (Other).

5. Check the Display a Notification About Every Script Error Entry (this
is optional).

Figure 18-2:
Use this

debugger to
get your

scripts
working

right.

323Chapter 18: Ten Great CSS Tips and Tricks

26_584251 ch18.qxd 2/10/05 11:32 PM Page 323

Go here for instructions on setting breakpoints, stepping through code
(both often very useful techniques), looking at variables, editing variables
(a command window), and other features:

http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/sdbug/Html/sdbug_1.asp

Finding a List Apart (Get It?)
One source for excellent ideas, samples, and articles — submitted by some of
the most talented Web designers around — is to be found here:

www.alistapart.com/topics/css/

You can find some really cutting-edge CSS tricks and techniques described
here. And who knows? Maybe someday you’ll send in a cool idea or two of
your own.

Using Your Own Bullets in Lists
With CSS, designing custom bullets in a graphics program and then assigning
them to list items is easy. The following code produces the result shown in
Figure 18-3:

<HTML>
<HEAD>
<style>

ul { list-style-image: url(“mybullet.jpg”); font: 32px; }

</style>
</HEAD>
<body>

first
second
third

</body>
</html>

324 Part V: The Part of Tens

26_584251 ch18.qxd 2/10/05 11:32 PM Page 324

When you cut your custom bullet down to size by cropping it in the graphics
program, leave some white space on the right size so that the bullet won’t butt
right up against the text items. Another tip: Be sure to put the .jpg or .gif graphic
file in the same folder as the .htm file that contains the code above. Otherwise,
the browser won’t know how to find the graphic file. (Also see the next section
on specifying locations for graphics.)

Specifying Graphics Locations
If you store a graphics file in the same folder as your .htm or .html file, the
HTML code needs only the name of the graphics file, like this:

list-style-image: url(“mybullet.jpg”)

However, if the file is in another location, you must provide the path to that
location, and do some bizarre punctuating as well — adding a ///, for some
reason. This next example finds this file in the root directory of the c: drive:

list-style-image: url(“file:///C:\mause.jpg”)

Here’s a file located in the \photos subdirectory of the f: drive:

list-style-image: url(“file:///F:\Photos\mause.jpg”)

Here’s the additional bizarre punctuation (///\\) you must add for a local net-
work location:

list-style-image: url(“file:///\\Hp\servr\PHOTOS\mause.jpg”)

If you keep your graphic files on an Internet site, provide the URL address.

Figure 18-3:
Add

custom-
designed
bullets to
your lists
the easy

CSS way.

325Chapter 18: Ten Great CSS Tips and Tricks

26_584251 ch18.qxd 2/10/05 11:32 PM Page 325

Lastly, if your graphic file is stored on the space shuttle, use this punctuation:

“file:///\\\\\\\/^^^\\outerspace\servr\PHOTOS\mause.jpg”

The same punctuation and conventions are used when specifying the src=
attribute to load a graphic into an HTML element.

You might not see some of your graphics when you move your Web pages
from your local computer to a server to post them on the Internet. If that
happens, check file paths to ensure that the graphics files are located where
your code says they are. The simplest tactic is to just keep all dependency
files (such as graphics files) in the same directory as your .htm and .css files.
That way, you can use relative paths, meaning you don’t specify any path at
all in your code, just the filename. The browser understands it should look
for your graphics in the same path that it found the HTML file.

Combining Classes
You can save yourself some time and trouble by defining classes that are
later combined, like adjectives combine with nouns. Say that you want some
of your paragraphs framed in green, some in blue, and others in pink. You
could create a separate class for each kind of paragraph, or you could be
clever and create a general border style class, and three additional classes
for the coloring. Here’s how it works. First, you create four styles, and then
you combine the class names in the HTML elements when you use the
class= attribute:

<HTML>
<HEAD>

<style>

.framed {
border: solid 3px red;
padding: 6px;}

.pink { background-color: pink; }

.blue { background-color: blue; }

.green { background-color: green; }

</style>
</HEAD>
<body>

326 Part V: The Part of Tens

26_584251 ch18.qxd 2/10/05 11:32 PM Page 326

<p class=”framed green”>
You can save yourself some time and trouble by defining

classes that are later combined, like adjectives
combine with nouns.

</p>

<p class=”framed blue”>
You can save yourself some time and trouble by defining

classes that are later combined, like adjectives
combine with nouns.

</p>

<p class=”framed pink”>
You can save yourself some time and trouble by defining

classes that are later combined, like adjectives
combine with nouns.

</p>

</body>
</html>

Aunt Mildred’s Glazed Carrots
Here’s a prize-winning recipe for braised carrots.

1. Cook peeled carrots in a half cup of water and two tablespoons of
butter.

2. Sprinkle on a teaspoon of brown sugar and a pinch of tarragon.

3. Simmer until water disappears (a few minutes), and then gently
simmer in butter until carrots are just tender.

This will take a few more minutes; keep testing with a fork.

4. Now turn the fish (assuming you’re also cooking a fish).

Mr. and Mrs. Ratlick — who both look like Elton John — were the vegetable
judges at the 1992 State Fair in Seeping Bog, La. and they awarded my Aunt
Mildred second prize for this recipe. Is this the wrong book for a recipe? In
any case, you didn’t get cheated because this is the eleventh tip in this chap-
ter; the other ten are about CSS. Try the carrots. They should have won first
prize.

327Chapter 18: Ten Great CSS Tips and Tricks

26_584251 ch18.qxd 2/10/05 11:32 PM Page 327

328 Part V: The Part of Tens

26_584251 ch18.qxd 2/10/05 11:32 PM Page 328

Chapter 19

Ten Topics That Don’t Fit
Elsewhere in the Book

(But Are Important)
In This Chapter
� Visiting the official site: Be afraid

� Upgrading HTML to CSS

� Reading good tutorials and reference information

� Nailing down inheritance

� Getting explanations about complicated rules

� Offering alternatives

� Allowing the user to decide

� Considering Visual Studio

� Playing with columns

� Layering

Don’t take the title of this chapter as a confession of my disorganization
and confusion when I planned this book. No, it merely represents some

ideas and resources I think you should know about, even though they don’t
comfortably fit within other chapters. Take a look at all the other chapters
and you’ll see that the book is not chaotic or, as your grandmother might say,
higgledy-piggledy. It’s a model of method and logic. Really.

So, at least please glance at the headings in this chapter and see if some of
these subjects interest you. I think you’ll find a few topics here worthy of
your inspection.

27_584251 ch19.qxd 2/10/05 11:30 PM Page 329

Keeping Current via the Internet
The most thorough descriptions of the latest proposals, drafts, and recom-
mendations can be found at the official site for CSS:

www.w3.org/Style/CSS/

At this site, you find tutorials, news, reviews of utilities, actual utilities (such
as the various “validators” that check your HTML or CSS code for errors
described in Chapter 17), and other information. Although heavily slanted
toward the academic community — where theory and minutia so often tri-
umph over efficiency and common sense — you can also find practical
advice at this site too. True, you must ferret out the practical info because
it’s surrounded by smoke and mist. Let me be plain: I suggest you first try
some of the other sources of CSS information described later in this chapter.
(However, if you have any suggestions about future CSS features, you can
send them to the official committees via this site, so keep that in mind.)

Upgrading HTML Web Pages to CSS
Many designers find CSS so efficient that they decide to translate their exist-
ing HTML-based Web pages into CSS-based pages. This involves more than
simply replacing tags, but you’ll likely find the payoff well worth the
effort. You can find an excellent, step-by-step tutorial on migrating a site from
HTML to CSS here:

www.websitetips.com/info/css/intro1/

Finding Good Tutorials and
Reference Information

Besides this book (and I say this in all humility), one of the best places to find
solid, useful advice and tutorial lessons about CSS (and related technologies
as well) is the w3Schools site. It’s good for looking up details about CSS fea-
tures, finding code examples, or just reading some well-done descriptions of
how and why CSS works. Take a look here:

www.w3schools.com/css/default.asp

330 Part V: The Part of Tens

27_584251 ch19.qxd 2/10/05 11:30 PM Page 330

In addition to CSS information, this site explores many other topics related to
Internet programming: scripting, XML (and its many flavors), DHTML, ASP.NET,
SOAP (Simple Object Access Protocol, a light, flexible communications proto-
col built on XML), DOM (the Document Object Model, a standardized model of
the structure of an XML object), and so on.

Also take a look at these sites for valuable, advanced CSS information:

www.nypl.org/styleguide
www.quirksmode.org/

Remembering Inheritance
One problem that many CSS authors, including moi, face is confusion about
why some styles are inherited and others are not. For example, say that you
specify that the text in a paragraph should be green, but somehow the entire
text is not green after all. Consider this example:

<p style=”color: green;”>This paragraph includes
boldface and also a link eBay to a Web
page.

</p>

You specified green in your style, yet the hyperlink text (eBay here) isn’t
green. It’s blue or whatever color the user’s browser specifies for hyperlinks.
A browser rule wins over your style. But because the browser has no rule for
, that element turns green (inherits the color from the parent para-
graph element). So if you find yourself perplexed about why some style isn’t
being inherited, chances are you’re dealing with this issue. If you really, really
want to turn the link text green, you must override the browser style by
adding a style to that link, like this:

<p style=”color: green;”>This paragraph includes
boldface and also a link <a
style=”color: green;”
href=”http://www.ebay.com/”>eBay to a Web
page.

</p>

331Chapter 19: Ten Topics That Don’t Fit Elsewhere in the Book (But Are Important)

27_584251 ch19.qxd 2/10/05 11:30 PM Page 331

The SelectORacle: Getting Explanations
About Complicated Rules

Do you have a CSS style so complex that you’re not sure even you, the
author, understand it? Or did you come across an interesting Web page and
look at the source, only to discover a line of CSS code that you simply can’t
visualize, like this one:

body > h2:not(:first-of-type):not(:last-of-type);

What does that CSS code mean? What does it select in the body? Some H2
headlines, but which ones?

To find a well-explained answer, a translation of the meaning of the rule, and
also get a list of any possible errors, go to this site:

http://gallery.theopalgroup.com/selectoracle/

You’ll be glad you did. Explanations in English or Spanish are available. What
does the SelectORacle say about that H2 rule? Here’s his/her/its answer:

“Selects any h2 element that is not a first child of its type and that is not a
last child of its type, that is a child of a body element.”

For an automated translation, this oracle does a pretty fine job. It can be
especially helpful in clarifying complicated relationships.

Providing Alternatives
For space conservation and other reasons, I’ve avoided using the alt
attribute with the img element in this book. In plain English, when I displayed
a graphic, I didn’t simultaneously supply a text explanation of that graphic.
The text is supposed to fill in the gap left if, for example, the user has a slow
Internet connection (or a device that has a very small screen like that of a
cell phone or PDA) and, consequently, a graphic cannot be displayed.
Another scenario: The blind often listen to audio versions of Web pages. They
appreciate hearing a text description of the graphics that they can’t see.
These are all valid reasons for using alt.

<IMG SRC=”seashore.jpg” ALT=”This is a pleasant, if clichèd,
photo of a typical, deserted Aussie beach.”>

“So, why didn’t you use alt?” I can hear someone saying. “What’s wrong
with you?”

332 Part V: The Part of Tens

27_584251 ch19.qxd 2/10/05 11:30 PM Page 332

My defense is straightforward. Many computer books include long code exam-
ples that go on and on, sometimes for pages. I think that’s bad practice. Sample
code should make its point as simply and clearly as possible. I don’t want the
reader struggling through lots of code that’s not related to the topic being illus-
trated. So I leave out as much as I can (for example, it’s desirable to use the
<title> element in your Web pages, but you won’t find that in this book).

Another alternative technique, although perhaps less important than alt, is
providing a default font family. You do this on the assumption that not every-
one has, for example, Microsoft’s famous sans serif font Arial. Yet you want
even those viewers to see a sans font (not a serif font, like Times Roman).
This isn’t essential, but it’s nice. Even some validators that check CSS code
suggest that you do this, if they catch you specifying a particular font family,
like this:

p
{
font-family: arial
}

The suggestion is that you specify the font you really want first, and then you
can add any additional fonts that you want to use as substitutes. Finally, if
none of your substitutes are available (where are these people with zero
fonts?), you end your wish list with a generic font, of which CSS has five:
Serif, Sans Serif, Monospace, Cursive, and Fantasy. I suggest that you stick
with the first three, unless you design wedding invitations (Cursive) or work
for a clown school (Fantasy). Here’s how to add a generic font family:

p
{
font-family: arial, sans-serif
}

Letting the User Decide
How about providing some alternative style sheets, rather than just enforcing
one look on your Web documents? Who gets to select between these alterna-
tives? Your audience, the viewers of your Web pages, the welcome guests.
I’m not suggesting that you become as superhumanly accommodating and
polite as some societies. I understand that in some countries, hurricanes are
respectfully described as “guest winds.” I’m not prepared to go that far. But
civility is always welcome, and users usually appreciate having some say in
how things look.

333Chapter 19: Ten Topics That Don’t Fit Elsewhere in the Book (But Are Important)

27_584251 ch19.qxd 2/10/05 11:30 PM Page 333

Netscape 6 lists any alternative styles in its View➪Use Stylesheet menu.
Internet Explorer doesn’t offer this feature, but users can adjust their color
preferences, for instance, by following these steps:

1. Choose Tools➪Internet Options in Internet Explorer.

The Internet Options dialog box opens.

2. Click the General tab.

3. Click the Colors button.

Make changes in the Colors dialog box that opens and click OK.

Similarly, from the General tab, you can click the Fonts button to modify those.

Don’t follow Netscape’s example (it’s not convenient for users to check a
menu each time they visit a new Web page, just to see if alternative styles are
available). Instead, describe alternative styles right on your Web page and
provide links for users to click to shift to a new style. Perhaps you have a style
for fewer graphics or larger text (for people with vision problems). You could
also vary the styles based on the user’s favorite color or personal hobbies. It’s
simply always nice to ask a guest if they want something to drink, and if so,
what would they prefer. Even a guest wind appreciates consideration.

If you want to have alternative style sheets for Netscape menus, just add
extra link elements in your head section, like this (the title appears in the
menu):

<link type=”text/css” rel=”stylesheet” title=”Oldstyle”
href=”MyDefault.css”>

<link type=”text/css” rel=”alternate stylesheet”
title=”Conservative” href=”MyDefault.css”>

<link type=”text/css” rel=”alternate stylesheet”
title=”Out There” href=”MyDefault.css”>

To provide alternatives for most of the world (Internet Explorer users), you
could insert <a> elements in the body of your document that can simply send
the user to a different page, or an alternative site altogether. This isn’t a CSS
solution, though. So if you want to switch styles via CSS external style sheets
(as the Netscape solution does), you have to write a script for IE. For exam-
ples, go here:

http://www.alistapart.com/

334 Part V: The Part of Tens

27_584251 ch19.qxd 2/10/05 11:30 PM Page 334

Exploring Visual Studio
Several years ago, starting in 1997 with Visual Interdev, Microsoft managed to
merge all of its programming languages and programming tools into a single
suite of tools, now called Visual Studio. You’ll find lots of ways to create Web
sites, attach databases to them, build modules in several languages (that can
work together), and otherwise simplify life for programmers and people cre-
ating Web sites. CSS was not omitted from this suite.

Although many Web developers and programmers in other fields are rather
unhappy with Microsoft, the company remains difficult to ignore. For good or
ill, Microsoft sets the standards and will continue to do so for the foreseeable
future. Developers and programmers who refuse to use Microsoft products
are a bit like drivers who refuse to use highways. It’s possible to do but
inconvenient.

If you haven’t looked it over, you might want give Visual Studio a try.
Inexpensive versions are available on eBay. Sure, other CSS editors are out
there, but none offers the huge number of features built into Visual Studio.
None comes remotely close. We’re talking advanced debugging, macro facili-
ties, direct connection to databases, and hundreds of tools, wizards, controls,
add-ins, and other features that make the journey from idea to finished Web
site much easier and faster. If you prefer the back roads, more power to you
(and I mean that literally). If you want the highway, no other programming
suite is even worth considering.

Some may say that this book is too Microsoft-centric, but my only response is
to look at the marketplace. The huge majority of users (as opposed to some
computer professionals for whom Microsoft can do nothing right) are over-
whelmingly Microsoft-centric too.

Figure 19-1 provides a look at some of the features in the CSS design area of
Visual Studio.

During 2005, Microsoft is rolling out a set of programming products it calls
Express versions. Microsoft touts these technologies — including Visual Web
Dev 2005 Express (ASP.NET) — as products that expand the Visual Studio line
to include easy-to-use tools for hobbyists and novices who want to build
dynamic Windows applications and Web sites. All the same, these are power-
ful products. For example, the Visual Basic Express version is actually capa-
ble of doing what the “professional” version can do. The primary difference is
that the Express version has a friendlier user interface (fewer options are
immediately visible, so you don’t get overwhelmed) and a less technical slant
(so beginners can get acquainted without feeling threatened). Give these
products a try. The beta versions are free for the download now at

http://lab.msdn.microsoft.com/express/

335Chapter 19: Ten Topics That Don’t Fit Elsewhere in the Book (But Are Important)

27_584251 ch19.qxd 2/10/05 11:30 PM Page 335

Rediscovering Columns
Lots of sites (like those for newspapers and magazines) cry out for columnar
layouts. Web pages often look best when the text is divided into easily-scanned
widths, perhaps two or three columns per page. Maybe you remember from
Chapter 12 the exploration of various ways to use columns in your Web pages
that you can do with pure CSS, without resorting to tables.

However, there are additional techniques involving columns you might want
to experiment with. If this topic is of further interest to you, try visiting this
Web site, which specializes in CSS column design and has excellent informa-
tion and resource lists for other aspects of CSS as well:

http://glish.com/css/

Figure 19-1:
If you plan

to do any
serious

Web site
develop-

ment — no
matter what
kind — give

Visual
Studio a try.

336 Part V: The Part of Tens

27_584251 ch19.qxd 2/10/05 11:30 PM Page 336

Playing with Positions
Setting the CSS position property to absolute enables you to superimpose
elements to your heart’s content. The following sample code paints text on
top of text. This is also one way of adding simple shadows (merely offset the
absolute positions by a small amount, as in this example). Also notice that
the order in which you place these divisions matters: They’re painted on the
browser window in the order in which they’re listed. So, in this example, the
last div, colored hot pink, is on top of the other two. Its characters are super-
imposed on the other text, as shown in Figure 19-2.

<HTML>

<HEAD>
</HEAD>

<BODY”>

<DIV style=”position: absolute;
top: 35px;
left: 150px;
color:lightgreen;
font-size: 90pt “>
SUPER
</DIV>

<DIV style=”position: absolute;
top: 98px;
left: 181px;
font-size: 40pt;
font-style: italic;
letter-spacing: .9cm;
color: gray;”>imposition
</DIV>

<DIV style=”position: absolute;
top: 95px;
left: 179px;
font-size: 40pt;
font-style: italic;
letter-spacing: .9cm;
color: hotpink;”>imposition
</DIV>

</BODY>
</HTML>

337Chapter 19: Ten Topics That Don’t Fit Elsewhere in the Book (But Are Important)

27_584251 ch19.qxd 2/10/05 11:30 PM Page 337

Figure 19-2:
Experiment
with super-

imposing
elements
on top of

each other
by using
absolute

positioning.

338 Part V: The Part of Tens

27_584251 ch19.qxd 2/10/05 11:30 PM Page 338

• Symbols and
Numerics •
* (asterisk)

attribute selector, creating, 53
matching parts of words in attributes,

266–267
universal selector, styling, 262

*/ (asterisk, forward slash), 38
{} (braces)

grouping, 35
JavaScript procedure beginning and

end, 282
writing style, 300

[] (brackets), 264
^ (caret), 266–267
: (colon)

graphics file, describing, 247
property and value, separating, 33

, (comma), 257, 259
$ (dollar sign), 266–267
= (equals sign), 298
/* (forward slash, asterisk), 38
<> (greater than, less than symbols), 298
(hash symbol), 39
— (em-dash), 109
% (percent sign), 80
; (semicolon)

error message, 307–308
graphics files, describing, 247
multiple declarations, 49
omitting, 62

~ (tilde), 53
3-D

drop-shadow effect, 105–106
text, creating, 166–167

• A •
absolute specification

divisions, placing independently, 218
drawbacks of using, 19
nesting boxes, 232
positioning, 72, 78
sizes, typeface, 99
text, painting atop, 337–338

active content, caution about, 246,
248, 283

Active Server Page, 266–267
Adobe Photoshop

backgrounds, 143–144, 146
borders, creating, 118–119, 123
shadowing text, 105, 235
text, fading, 27
3D effect, 166–167

aligning text
changing all, 63–64
descriptive values, 139–140
horizontal, 141–142
by percentages, 140–141
vertical, 138–139

all-purpose properties
font, 100–101
specifying, 37–38

analog effects, 21
animation

digital, manipulation of, 21
fading text, 27

arithmetic
coordinates, 72
specificity, calculating, 44–45
z-axis, 81–82

aspect ratio, 107

Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 339

ASP.NET
express version, 335
viruses, 283

asterisk (*)
attribute selector, creating, 53
matching parts of words in attributes,

266–267
universal selector, styling, 262

asterisk, forward slash (*/), 38
attributes

CSS equivalent, 34–35
matching parts of words in, 266–267
selections, 264
selectors, using as, 50–51
transition, 242
types, matching, 53

Aunt Mildred’s glazed carrots recipe, 327
auto elements

centering, 201
Internet Explorer, forcing (!DOCTYPE),

201–202
layout, controlling, 197–200
margins, specifying, 200
vertical positioning, 202–203

• B •
Baby Kruffy font, 90
background

box elements, 170, 178
browser, positioning against, 73
colors, 114, 123–125
erasing to create silhouette, 159–160
floating ball focal point, freeform design

and, 220–221
images and design rule of thirds,

166–168
individual properties, setting, 147–148
non-inheritable, 46, 148
paragraph, 177
positioning, 149–151
special repeats, 148–149

text colors, 261
texturing, 143–147, 243–244

balance, 156–158
bandwidth restrictions, 233
baselines, line spacing, 135
Basic programming, 238–239
blank areas

balance, 156–158
headline spacing, eliminating extra, 102
lack of, using font to balance, 94
reviewing, 156
thirds, rule of, 166
violating, 166

blinds, vertical and horizontal transition
wipes, 29, 241–242

blinking text, 103
blocks

parent and child, distinguishing, 46
positioning, 80–81, 169

blurring
static filter, 236–237
timing, 321–322

bold text, 95
borders

beveled (inset), 119–120
boxes, 171
choosing styles, 186–188
colors, 118–119, 190–191
described, 184
horizontal rules, 179
inheritance, excluded from, 46
missing, 320
mixing and matching styles, 188–189
simple, specifying, 184–186
specifying, 100
width, specifying, 189–190

bottom box element, 170
box in/out transition wipes, 29
boxes

borders, 171
content area width and height, 170

340 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 340

described, 169–170
horizontal positioning, 176–178
margins separating paragraphs from

nearby elements, 172
nesting boxes within, 232
padding, 171–172
text, breaking up with horizontal lines,

178–181
vertical positioning, 173–176

braces ({})
grouping, 35
JavaScript procedure beginning and

end, 282
writing style, 300

brackets ([]), 264
branches, inheritance tree structure,

255–256
browser compatibility issues

avoiding, 25–26, 97
border styles, 187
centering paragraphs, 201
colors, 116
column alignment, 228
competing styles, 64–65
CSS as end of, 3–4
descendent selectors, 263
ignoring, benefits of, 19–20
kerning, 133
opacity, 84
positioning, 70
resizing columns, 224–228
scripting language, 279
shadowing text, 235
sniffers, 302–303
testing and debugging, 301–303
validating work, 300
vertical positioning, 202
viewport, 76

browser source view, 43
bullets

customizing, 210–211, 213, 324–325
left float, 193

buttons
checking, 276–277
image-exchange script, 244–246
outset, 121

• C •
C programming

coding exactness, 287
language- versus type- attribute, 281
punctuation, checking, 297
qualities derived from, 38
scripting, 238–240

Calisto font, 93
camera, 21
canceling floating elements with clear,

194–196
capital letters

enlarged overlapping at start of
paragraph, 160–162

headlines, 88
kerning, 131
specifying all, 104–105

capital letters, smaller (drop caps)
design rules, 160–162
false pseudo-element (first-letter),

274–275
left float, 193

captions, positioning, 163
caret (^), 266–267
carrots recipe, 327
cartoons

digital, manipulation of, 21
fading text, 27

cascade
described, 41
specificity, 41–45

Cascading Style Sheets (CSS) committee
drafts, 265

Cascading Style Sheets (CSS) editors
filters, 26
HTML tags, modifying, 24

341Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 341

Cascading Style Sheets (CSS)
editors (continued)

text editors versus, 31–33
with Visual Studio, 22–23

Cascading Style Sheets (CSS) Web
site, 330

Cascading Style Sheets, version 3 (CSS3)
descendant selectors, dubious, 277–278
described, 265
false pseudo-classes, 269–273
false pseudo-elements, 273–275
Mozilla Firefox browser features,

266–269
pseudo-classes, 275–277

case-sensitivity
described, 41
lowercase, benefits of using, 41

Caslon font, 93
Caslon, William IV (typeface

designer), 92
cells

empty, 216
vertical alignment, 139

centering
auto elements, 201
headline, 70, 71
on hot spot, 167
methods, 320–321

centimeters (cm), 80
changes, global, 17
checkerboard transition wipes, 29–30
checking radio buttons and check boxes,

276–277
child objects

containing blocks, 169
described, 45–46
em font sizes, 110
first, selecting only, 263, 273
nested blocks, 76
relative font sizes, 98–99
specificity, 57–58

Chiller font, 90

circle in/out transition wipes, 29
circle list symbol, 208–209
circular gradient text, 28
classes

attribute specificity, calculating, 44
defining, 326–327
multiple, specifying with ID

selectors, 40
name, adding, 272–273
partial attribute values, matching, 53
selectors, 51

closeness
cascade, 41–45
style sheet, 57–59, 62

cm (centimeters), 80
coding

comments, 38
constant, CSS style similarity to, 17
executing scripts upon loading,

282–283
graphics file descriptions, 247
languages, scripts and, 238–240
Microsoft Express versions, 335
monospace language indicating, 91
object-oriented computer languages, 36
rules, changing, 288–290
script writing, 279–282
server-side code execution, 283–284
styles, modifying, 284–288
syntax and, 287
timers, 290–295
for users who disable scripts, 280–282

coin background example, 144–146
colon (:)

graphics file, describing, 247
property and value, separating, 33

color
backgrounds, 114, 123–125
borders, 118–119, 190–191
box, temporary, 178
calculating, 115–116
changing script, 240–241

342 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 342

clashing, 320
highlighting text, 37–38, 261–262
horizontal lines, 179–180
inset borders, 119–121
light, origins of, 121–123
list, 116–118
paragraph styles, 115
positioning, 79
role of, 113–114
text, painting atop, 337–338
validating use of, 308–309

columns
fixed, building, 228–231
positioning with tables, 217
resizing with browser, 224–228
resources for using, 336

comma (,), 257, 259
command, 60
comments

described, 38
symbols, hiding code with, 281

compatibility issues, browser
avoiding, 25–26, 97
border styles, 187
centering paragraphs, 201
colors, 116
column alignment, 228
competing styles, 64–65
CSS as end of, 3–4
descendent selectors, 263
ignoring, benefits of, 19–20
kerning, 133
opacity, 84
positioning, 70
resizing columns, 224–228
scripting language, 279
shadowing text, 235
sniffers, 302–303
testing and debugging, 301–303
validating work, 300
vertical positioning, 202
viewport, 76

competing styles, how browsers handle,
64–65

computer display sizes
absolute positioning, 73
ignoring different, benefits of, 19–20, 97
relative positioning, 70
smallest units on, 108
worrying about different, 18–19

constant, CSS style similarity to, 17
containing block

defined, 169
image location within, 80–81
nesting, 76
percentages, calculating, 19
top and left properties, 74

content
box area width and height, 170
separating from style, 1–2

contextual selectors
descendants, 261–262
described, 257–258
grouping versus, 258–260
styling, 262

coordinates, mathematical, 72
corner, positioning in, 78
countdown timers, 293
Courier font, 90–91
Creating Killer Web Sites (Siegal), 213
CSS (Cascading Style Sheets) committee

drafts, 265
CSS (Cascading Style Sheets) editors

filters, 26
HTML tags, modifying, 24
text editors versus, 31–33
with Visual Studio, 22–23

CSS (Cascading Style Sheets)
headline, 17

CSS (Cascading Style Sheets) online
site, 330

CSS3 (Cascading Style Sheets, version 3)
descendant selectors, dubious, 277–278
described, 265

343Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 343

CSS3 (Cascading Style Sheets,
version 3) (continued)

false pseudo-classes, 269–273
false pseudo-elements, 273–275
Mozilla Firefox browser features,

266–269
pseudo-classes, 275–277

cursive fonts, 90

• D •
darker text, 95
darkness, font, 95
dates, small caps indicating, 96
debugger

HTML, 309–314
importance, 300
W3C tool, 304–309

debugging and testing
browser compatibility, 301–303
browser source view, 43
HTML validator, 309–314
missing closing semicolon, 49
punctuation, checking, 297–300
scripts, 315, 323–324
separate .css file, 60–61
validating work, 300
W3C validator, 304–309

decimal lists, 209
default styles

background property, 148
border color, 190
conflicts, resolving, 41
headlines, 32
height of element, 173
IE font, 94
positioning, 69–70, 173
table layout, 214–216
typeface, 108

descendant
contextual selectors, 261–262
dubious selectors, 277–278
thwarting, 263

descenders, character, 135
descriptive values, 139–140
design

appropriateness and, 168
creating compelling, 1
drop caps, 160–162
freeform, 217–221
HTML for different screen sizes, 18–20
inline elements, drawbacks of using,

203–206
internal, 222–224
judging your capacity, 155
silhouetting objects, 159–160
tasks, 20–22
thirds, rule of, 164–168
trapped white space, 163
typeface sizes, limiting, 97
white space, organizing with, 156–158

digital camera, 21
digital effect, 21
disc list symbol, 208–209
display sizes

absolute positioning, 73
ignoring different, benefits of, 19–20, 97
relative positioning, 70
smallest units on, 108
worrying about different, 18–19

do-it-yourself Web pages, 5–6
dollar sign ($), 266–267
downlevel browsers, 302–303
dramatic visual effects

bandwidth restrictions and, 233
fading between images, 243–246
static filters, 234–238
transition filters, 238–242
transitions between pages, 246,

248–249
drop caps

design rules, 160–162
false pseudo-element (first-letter),

274–275
left float, 193

344 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 344

drop shadow type effect
described, 105–106
with static filter, 234–238

duplicate ID selector, viewing, 38–39
dynamic code, 238

• E •
editor, CSS (Cascading Style Sheets)

filters, 26
HTML tags, modifying, 24
text editors versus, 31–33
with Visual Studio, 22–23

editor, graphics
backgrounds, 143–144, 146
borders, creating, 118–119, 123
shadowing text, 105, 235
text, fading, 27
3D effect, 166–167

editor, Microsoft Script
converted code, 58–59
opening, 56

editor, text
specialized CSS editors versus, 31–33
styles, changing, 284–288

element, HTML, 34
em measurements

described, 108
font, 80
letter spacing, 128
size and position, specifying, 109–110
usefulness of, 107–108
Word document, converted to

HTML, 57
embedded style sheets

described, 16
overriding, 62
precedence, 42, 58

em-dash (—), 109
emphasis

contextual selectors and, 260
kerning used as, 127

empty places on page
balance, 156–158
lack of, using font to balance, 94
reviewing, 156
thirds, rule of, 166
unnecessary between lines of

headlines, eliminating, 102
violating, 166

English measurement system, 108
equals sign (=), 298
errors

HTML code, color indicating, 58
programming languages and, 287
W3C validator messages, 307–308

escape sequences, 41
ex (x-height of font), 80, 109
exact attribute values, matching, 54
executing scripts upon loading, 282–283
exotic fonts, 90
expandable display tables, 214–216
Express programming versions, 335
eXtensible HTML (XHTML), 40
eXtensible Markup Language (XML)

attribute selector class matching, 52
Word document, converted, 56

extensions, developer, 314
external style sheet, 59–60

• F •
fading between images

animation, 84
button-activated, 240
dramatic visual effects, 243–246

fading text, 26–27
false pseudo-classes

class name, adding, 272–273
described, 269–270
first children, selecting only, 273
hovering, 272
hyperlink formatting, 270–272

345Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 345

false pseudo-elements
described, 274
drop caps (first-letter), 274–275
pseudo-classes versus, 273
text lines, special (first-line), 275

fantasy fonts, 90
file, separate

defining CSS rules in, 16
linking, 32, 60
precedence ranking, 42

filters
described, 26–30
timing, 291, 322
transition, dramatic visual effects and,

238–242
Firefox (Mozilla)

border styles, 187
centering issues, 201, 320
column alignment, 228
debugger, 312–313
matching parts of attributes, 266–267
negation pseudo-class selector (:not

command), 267–268
opacity, 84, 268–269
selecting attributes, 50
syntax, 268
vertical positioning, 202–203

first children, selecting only, 273
fixed columns, building, 228–231
fixed or expandable display tables,

214–216
flavor, HTML document, 310
floating elements

canceling with clear, 194–196
hand-written code, 191–194

flow location, modifying, 73–75
focal point, placing, 164–165
font

line height, adjusting, 133–134
relative versus absolute measures, 107
size, letting users specify, 319

substituting, 86–87
units of measurement, 80

font family, 62, 86
foreground objects, silhouetting, 159–160
formatting

CSS style, 35
HTML, growth of, 18

forms, 231
forward slash, asterisk (/*), 38
framesets, 310
full or partial page background

textures, 144
fuzziness

static filter, 236–237
timing, 321–322

• G •
Garamond typeface, 93, 94
generic Roman fonts, 94
.gif graphics, positioning with invisible,

213–214
Gigi font, 90
Goudy font, 93
gradient text

basic, 27
circular, 28

graphics
alternatives, providing, 332–333
border, 188–189
bullets, customizing, 210–211, 213
files, specifying in different

programming languages, 247
locations, specifying, 325–326
splash screen, 292–293
stabilizing, 197–198
style, setting for each, 15
text, dividing, 180–181
texturing backgrounds, 145–147

graphics editor
backgrounds, 143–144, 146
borders, creating, 118–119, 123

346 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 346

shadowing text, 105, 235
text, fading, 27
3D effect, 166–167

gray/grey, 118
greater than, less than symbols (<>), 298
grouping

contextual selectors versus, 258–260
multiple selectors, 34
punctuation, 257
writing CSS, 35

• H •
Haetten font, 93
hand-written code, 191–194
hash symbol (#), 39
header, style definitions in, 39–40, 77–78
headlines

centering, 70
changing type and alignment, 63–64
CSS, 17
default style, 32
defining as group, 35
font, choosing, 94
freeform design, 220
horizontal spacing, adjusting with

kerning, 127–131
line height, 101–102
organizing paragraphs, 183
positioning, 163
qualities, applying to all, 16, 47–48
rule violations, 156
sans serif fonts and all-caps, 88
timers changing, 290–292
vertical line spacing, adjusting, 133–135
white space between words, adjusting,

135–138
height

box, 172, 175
default, 173
resizing elements, 173–174
text, defining, 80

hex number, 116–117
hierarchy, inheritance ranking, 256
highlighting

bold text, 95
hover effect, 272
text elements, 37–39

horizontal lines, 178–181, 183
horizontal positioning

boxes, 176–178
text, 141–142

horizontal transition wipes, 30
hovering, 272
HTML (HyperText Markup Language)

advantages of CSS, 15
associating styles with, 23–24
case-sensitivity, 40
class selectors, 51
comment symbols, hiding code

with, 281
concepts, equivalent language

in CSS, 33
designing for different screen sizes,

18–20
document, generating, 54–55
element, CSS equivalent, 47–48
embedding CSS code, 16
forms, 231
headlines, applying to, 16
indentation problem, 143
outlining documents in, 17–18
paragraph text, specifying, 109–110
punctuation, 298
selecting only attributes, 264
tags, modifying with CSS editors, 24
timer, working with, 290–293
upgrading pages to CSS, 330
validating work, 300
viewing, 207
viruses, 283
Word document, converting, 54–57

347Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 347

HTML (HyperText Markup Language)
validator

alternatives, finding, 314
described, 309
requirements, 310–314
versions, 310

hyperlink formatting
false pseudo-classes, 270–272
universal selectors, avoiding use of, 49

• I •
icon

left float, 193
text, offsetting, 160

ID selectors
case-sensitivity, 40–41
creating, 39–40
duplicates, viewing, 38–39
multiple classes, specifying, 40
specificity, calculating, 44

if ... then programming structure,
240–241

image editor
backgrounds, 143–144, 146
borders, creating, 118–119, 123
shadowing text, 105, 235
text, fading, 27
3D effect, 166–167

images
buttons, script exchanging, 244–246
focal point, 164
matting, 120
paragraphs, dividing, 180–181
resizing, 173–174
vertical alignment, 141

immovable tables, specifying, 222–224
imperial measurement system, 108
!Important styles

described, 60–63
inconsistency in terminology, 59

in (inches), 80, 108

indenting text
bulleted or numbered lists, 211–212
specifying, 143
usefulness, 142
workarounds, 143

inheritance
confusion about, 331
described, 45–46
hierarchy, places in, 256
offspring, 257
parents versus ancestors, 254–255
roots, 255–256
specificity, 58, 253–254
universal selectors, unintended side

effects of, 49
initial caps, 104–105
inline elements

drawbacks to using, 203–204
poor use of, 204–205
positioning, 169
precedence, 42, 58

in/out transition wipes, 29
input elements

checking, 276–277
image-exchange script, 244–246
outset, 121

inset border colors, 119–121
interface, user

buttons, 121, 276–277
image-exchange script, 244–246
text, considering, 85–86

internal design, 222–224
internal style precedence, 42
internal style sheet, 39
Internet address. See URL; Web sites,

addresses listed
Internet Explorer (Microsoft)

active content, caution about, 246,
248, 283

attribute selectors, 50
auto elements, forcing (!DOCTYPE),

201–202

348 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 348

centering paragraphs, problem with,
201, 321

color list, 79, 117
CSS3, 266
debugger, 323
designing for, 19–20, 25
filters, 26–30
font, default, 94
ID selector, failure of, 38
loading CSS files into, 16
opacity, 84
scripting, 239, 280
tables, 216
validating work, 300
vertical positioning, 202

Internet, high-speed, 233
interval timers, 294–295
intranet design issues, 19
invisible .gif graphics, positioning with,

213–214
italic type

serif characteristics, 88
specifying, 63–64, 96–97
when to use, 94–95, 127

• J •
JavaScript programming

coding exactness, 287
described, 239
examples, 243
scripts, executing upon loading, 282

Joker typeface, 85–86
Jokewood font, 90
justified text

described, 135–137
with kerning and line space reduction,

137–138

• K •
kerning

described, 127–129
kerning-mode property, 135

large font sizes, 102
letter-by-letter, 129–131
ultra, 131–133
word spacing, 137–138

keywords, 59–60

• L •
language

monospace font, 91
values, matching, 53

layers, 21
layout, controlling with auto elements,

197–200
leading

baselines, 135
described, 133
percentages, adjusting, 133–134
reduction, 137–138

left property
box elements, 170
containing block, 74

left side box elements, 170
left strips transition wipes, 30
left/right transition wipes, 29
legibility, 88
length, measuring, 108–109
letter-by-letter kerning, 129–131
lettering textured backgrounds, 144
light source

colors and, 121–123
drop shadow effect, 235
outset effect, 191

lightness, font, 95
line height, adjusting, 101–103
line spacing

baselines, 135
described, 133
percentages, adjusting, 133–134
reduction, 137–138

lines around elements
beveled (inset), 119–120
boxes, 171
choosing styles, 186–188

349Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 349

lines around elements (continued)

colors, 118–119, 190–191
described, 184
horizontal rules, 179
inheritance, excluded from, 46
missing, 320
mixing and matching styles, 188–189
simple, specifying, 184–186
specifying, 100
visual organization, 184–191
width, specifying, 189–190

lining up text
changing all, 63–64
descriptive values, 139–140
horizontal, 141–142
by percentages, 140–141
vertical, 138–139

link formatting
false pseudo-classes, 270–272
universal selectors, avoiding use of, 49

linking files, 32, 60
lists

bullet graphics, altering, 210–211
bullets, customizing, 324–325
case-sensitivity of element, 40
coloring, 262
positioning, 211–212
shortcut format, 213
styles, 209
universal selector, styling, 262
usefulness, 208–209

loading
scripts, executing upon, 282–283
time, keeping low, 123
timer, activating, 291

lower-alpha numbered lists, 209
lowercase

kerning next to uppercase, 131
text, transforming, 104–105
writing code, benefits of, 41

lower-roman numbered lists, 209
lurid color combinations, 124–125

• M •
Macintosh computers, 26
Magneto font, 90
main topic, 164
margins

auto elements specifying, 200
box width, paragraphs, 177
browser window size and, 198
inheritance, excluded from, 46
paragraphs, separating from nearby

elements, 170, 172
percentages, specifying, 111–113

mathematics
coordinates, 72
specificity, calculating, 44–45
z-axis, 81–82

matting, 120
McClelland, Deke (Photoshop 7 For

Dummies), 146
measurement, units of

listed, 80
specific design, ensuring, 222–224

metric system, 108
metronome timer, 294–295
Microsoft

keywords, use of term, 59–60
static filters, 236

Microsoft Internet Explorer
active content, caution about, 246,

248, 283
attribute selectors, 50
auto elements, forcing (!DOCTYPE),

201–202
centering paragraphs, problem with,

201, 321
color list, 79, 117
CSS3, 266
debugger, 323
designing for, 19–20, 25
filters, 26–30

350 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 350

font, default, 94
ID selector, failure of, 38
loading CSS files into, 16
opacity, 84
scripting, 239, 280
tables, 216
validating work, 300
vertical positioning, 202

Microsoft Script Editor
converted code, 58–59
opening, 56

Microsoft Visual Studio
benefits of using, 335–336
color, choosing, 116
creating CSS files, 22–23
opening CSS files, 22

Microsoft Windows
drop shadowing on elements, 234–235
operating system typefaces, 91–92

Microsoft Windows Explorer, 26
Microsoft Windows Media Player,

276–277
Microsoft Word document

editing converted styles, 58–59
transforming into Web page, 54–57

middle alignment
auto elements, 201
headline, 70, 71
on hot spot, 167
methods, 320–321

minimalism, font selection and, 88
mm (millimeters), 80, 108
Modern font, 93
monospace typeface, 90–91
movies

digital, manipulation of, 21
fading text, 27

Mozilla Firefox browser features
border styles, 187
centering issues, 201, 320
column alignment, 228
debugger, 312–313

matching parts of attributes, 266–267
negation pseudo-class selector (:not

command), 267–268
opacity, 84, 268–269
selecting attributes, 50
syntax, 268
vertical positioning, 202–203

multicolumn layout
creating with tables, 217
resizing with browser, 224–228

multiple attributes, selecting, 53
multiple classes, specifying, 40
multiple properties, defining, 35
multiple selectors

declaring, 49–50
grouping, 34

• N •
naming

case-insensitivity, 40
classes, 36, 52
.css files, 32
font conventions, 87, 90

negation pseudo-class selector (:not
command), 267–268

nesting
boxes within page box, 232
bullets or numbers within list text,

211–212
Netscape

attribute selectors, 50
centering elements, 320
column alignment, 228
CSS support, 217
decreasing use of, 20, 25
vertical positioning, 202–203

non-inheritable backgrounds, 148
Notepad text editor

filters, 26
!Important command, removing, 61
selector group, adding, 64

351Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 351

Notepad text editor (continued)

style sheet, writing, 22, 60
styles, changing, 284–288
writing simple CSS, 31–32

numbered list styles, 209
numbers

color, 115, 116–117
digital images, manipulating, 21

• O •
Obermeier, Barbara (Photoshop 7 For

Dummies), 146
object-oriented computer languages, 36
oblique type style, 97
offsetting, 76–78, 79
offspring, 257
opacity

Mozilla Firefox browser features,
268–269

with stacking, 82–84
opening CSS files, 22
opening splash screen

browser incompatibility, warning
about, 302

timers, 292–293
Opera browser, 84
Optima typeface, 89
ordered list styles, 209
organization, visual

borders, 184–191
described, 183

ornamental fonts, 90
output display sizes

absolute positioning, 73
ignoring different, benefits of, 19–20, 97
relative positioning, 70
smallest units on, 108
worrying about different, 18–19

outset effect, 121, 122
overlining text, 103

overriding
embedded style sheets, 62
priority rules, 43

• P •
padding

boxes, 170, 171–172, 176
inheritance, excluded, 46
paragraphs, 177
sidebar class positioning, 78

pages
background texture, 144
color linking themes, 114
do-it-yourself, 5–6
HTML, upgrading to CSS, 330
nesting boxes, 232
template, 232
transition wipes between, 28–30
URL, validating, 310
Word document, transforming into,

55–57
pages, transitions between

blinds, 241–242
color changes, 240–241
dramatic visual effects, 246, 248–249
timing, 291

Palatino font, 93
paper output, 97
paragraphs

colors, 33–34, 115
competing styles, reconciling, 64–65
displaying, 32
emphasizing, 36
floating, 195–196
HTML, specifying, 109–110
indenting, 142–143
margins, specifying, 200
Microsoft embedded style, 62
resizing height, 174–175
selector, applying, 47–48

352 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 352

separating, 172
size or position, specifying by

percentage, 111–113
parent objects

ancestors versus, 254–255
described, 45–46
em font sizes, 110
nested blocks, 76
relative font sizes, 98–99
specificity, 57–58

parser
HTML, 309–314
importance, 300
W3C tool, 304–309

partial attribute values, matching, 53
pc (picas), 80, 108
pebble texture, 144
percent sign (%), 80
percentages

aligning text, 140–141
background images, 149–151
line spacing, 133–134
relative sizes, calculating, 19
type size and position, specifying, 109,

111–113
z-axis, 81–82

photographs
buttons, script exchanging, 244–246
focal point, 164
matting, 120
paragraphs, dividing, 180–181
resizing, 173–174
vertical alignment, 141

Photoshop (Adobe)
backgrounds, 143–144, 146
borders, creating, 118–119, 123
shadowing text, 105, 235
text, fading, 27
3D effect, 166–167

Photoshop 7 For Dummies (Obermeier
and McClelland), 146

picas (pc), 80, 108
pixels (px)

body type, allowing users to control,
319

column width, fixing, 228–230
described, 80, 108
font size, specifying, 99

points (pt)
described, 80, 108
font size, specifying, 99

positioning
backgrounds, 149–151
in blocks, 80–81
centering headline, 70
colors, 79
content with tables, 213–214
default, 69–70
elements, 337–338
em measurements, 109–110
flow versus, 73–75
graphics, 325–326
importance, 69
length, measuring, 108–109
lists, 211–212
measurement, units of, 80
offsetting, 76–78
opacity with stacking, 82–84
within other elements, 76
percentages, figuring, 111–113
relative, 70–73
spacing issues, 80
stacking on z-axis, 81–82
typeface points, 107

precedence, 41
precise typeface size control, 98–99
prepositions, capitalizing, 105
problems

HTML code, color indicating, 58
programming languages and, 287
W3C validator messages, 307–308

353Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 353

programming
comments, 38
constant, CSS style similarity to, 17
executing scripts upon loading,

282–283
graphics file descriptions, 247
languages, scripts and, 238–240
Microsoft Express versions, 335
monospace language indicating, 91
object-oriented computer languages, 36
rules, changing, 288–290
script writing, 279–282
server-side code execution, 283–284
styles, modifying, 284–288
syntax and, 287
timers, 290–295
for users who disable scripts, 280–282

property
backgrounds, 147–148
defined, 33, 34
font, 100–101
specifying, 37–38
value problems, 308–309
writing CSS, 34–35

protruding objects, 121
pseudo-classes

checking radio buttons and check
boxes, 276–277

drop caps, 161–162
enabling and disabling input

controls, 276
pseudo-classes, false

class name, adding, 272–273
described, 269–270
first children, selecting only, 273
hovering, 272
hyperlink formatting, 270–272

pseudo-elements, false
described, 274
drop caps (first-letter), 274–275
pseudo-classes versus, 273
text lines, special (first-line), 275

pt (points)
described, 80, 108
font size, specifying, 99

punctuation
marks, closing gap around, 132
missing, 49
object-oriented computer languages, 36
testing and debugging, 297–300

px (pixels)
body type, allowing users to control,

319
column width, fixing, 228–230
described, 80, 108
font size, specifying, 99

• R •
random bars transition wipes, 30
random dissolve transition wipe, 30
ratio, aspect, 107
rebates, 300
recipe, 327
Red, Green, Blue (RGB) values, 79
redirecting users to browser upgrade

site, 303
reference information, 330–331
relative

em and ex units, 109
positioning, 70–73
size and position, benefits of, 19
sizes, typeface, 97–98

repeating activity at intervals, 294–295
resizing

columns, 224–228
images, 173–174
paragraphs, 174–175

resources
CSS, 24–25
design, 324

RGB (Red, Green, Blue) values, 79

354 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 354

right side
box elements, 170
column alignment, 228

right strips transition wipes, 30
Roman fonts

choosing, 94
dominance of, 92
generic, specifying, 94
simplicity of, 92–93

roots, inheritance, 255–256

• S •
Safari browser, 84
Sans font, 93
sans serif typeface

described, 87–88
opacity, 97

scaling, relative sizes and, 19
scenes, moving from, 28–30
screen sizes

absolute positioning, 73
ignoring different, benefits of, 19–20, 97
relative positioning, 70
smallest units on, 108
worrying about different, 18–19

Script Editor (Microsoft)
converted code, 58–59
opening, 56

scripts
debugging, 323–324
executing upon loading, 282–283
hovering, 272
images, fading between, 243–246
programming languages and, 238–240
static elements, 73
testing and debugging, 315
for users who’ve disabled, 280–282
writing, 279–282

security issues
ASP.NET server-side code

execution, 283
scripting and, 246, 280

selections
attributes, 264
contextual selectors, 257–262
descendant, thwarting, 263
inheritance, specifying with, 253–257

SelectORacle, 332
selectors

adding, 63–64
attributes, using as, 50–51
benefits of using, 47–48
defined, 33, 34
exact attribute values, matching, 54
grouping with declarations, 50
multiple declarations, 49–50
partial attribute values, matching, 53
simplest version, 52–53
specificity, calculating, 44
subdividing, 35–36
types, matching, 53
universal, 48–49

semicolon (;)
error message, 307–308
graphics files, describing, 247
multiple declarations, 49
omitting, 62

serif typefaces, 87–88
server

code execution, 283–284
graphics, lost, 326

shading, border, 186–187
shadow type effect

described, 105–106
with static filter, 234–238

siblings, inheritance and, 256
sidebar class positioning, 78
Siegal, David (Creating Killer Web

Sites), 213
silhouetting objects, 159–160
single element, setting style for. See ID

selectors
size, specifying object

em measurements, 109–110
length, measuring, 108–109

355Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 355

size, specifying object (continued)

percentages, figuring, 111–113
typeface points, 107

size, typeface
absolute measured, 99
all-purpose font property, 100–101
line height, adjusting, 101–103
precise control, 98–99
relative, specifying, 97–98

small cap typefaces, 96
software, current CSS features, 24
solar system, movement of, 72
space characters, 132
spacing issues

padding bottom of text, 171–172
positioning, 80

special background repeats, 148–149
special effects timing, 321–322
specificity

cascade, 41–45
style sheet, 57–59, 62

splash screen
browser incompatibility, warning

about, 302
timers, 292–293

split vertical/horizontal transition wipes,
30

square list symbol, 208–209
stacking

absolute positioning, 74
default, 69–70
opacity with, 82–84
on z-axis, 81–82

static elements, 73
static filters, 234–238
strict HTML validator, 310, 314
strikethrough typeface, 103–104
strips transition wipes, 30
<style> elements, 16

style sheet
alternative, providing, 333–334
closeness rule, 62
competing styles, how browsers

handle, 64–65
external, creating, 59–60
HTML document, generating, 54–55
!Important styles, 60–63
selectors, adding, 63–64
semicolons, omitting, 62
specificity, rules about, 57–59
Word document, transforming into Web

page, 55–57
styles

contextual selectors, 262
programming, modifying, 284–288

subdividing tags, 35–36
subscript, 140
substituting fonts, 94
superscript, 140
symmetry, 157–158
synonymous typefaces, 90
syntax

exactness, 287
Mozilla Firefox browser features, 268

system typeface styles, 91–92

• T •
tabbing text

bulleted or numbered lists, 211–212
specifying, 143
usefulness, 142
workarounds, 143

table cells
empty, 216
vertical alignment, 139

tables
avoiding, 216–217
fixed or expandable display, 214–216

356 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 356

immovable, specifying, 222–224
Internet Explorer limitations, 216
multicolumn layout, 217
need for, 207
positioning content, 213–214
unusual positioning, 217–221

tags
all-purpose properties, specifying,

37–38
class selectors, 51
equivalent language in CSS, 33, 34
formatting, irregular development of, 18
subdividing, 35–36

Taho font, 93
template, Web page, 232
testing and debugging

browser compatibility, 301–303
browser source view, 43
HTML validator, 309–314
missing closing semicolon, 49
punctuation, checking, 297–300
scripts, 315, 323–324
separate .css file, 60–61
validating work, 300
W3C validator, 304–309

text
boldface, when to use, 95
breaking up with horizontal lines,

178–181
centering, 70
fading, 27
font, choosing, 86–87, 94
highlighting, 37–38
italics for emphasis, 94–95
line height, 101
lines, special (first-line), 275
matching parts in attributes, 266–267
paragraphs, displaying, 32
trapped white space, avoiding, 163
typefaces, 87–92
user interfaces, considering, 85–86

text editors
specialized CSS editors versus, 31–33
styles, changing, 284–288

texturing backgrounds
full or partial page, 144
with graphics, 145–147
lettering, 144
usefulness, 143–144

thirds, rule of
background images, 166–168
design rules, 164–168
focal point, placing, 164–165
white space and, 166

3-D
drop-shadow effect, 105–106
text, creating, 166–167

tilde (~), 53
tiling background property, 148
time, indicating passage of, 28–30
timers

changing heads, 290–292
countdown, 293
filters, 291, 322
metronome, 294–295
special effects, 321–322
splash screen, 292–293

Times Roman typeface
boldness, 95
when to use, 93, 94

top element
box elements, 170
containing block, 74

transition filters, 234, 238–242
transition wipes, 28–30, 242
transitional HTML flavor, 310
transitions between pages

blinds, 241–242
color changes, 240–241
dramatic visual effects, 246, 248–249
timing, 291

357Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 357

translucence
Mozilla Firefox browser features,

268–269
with stacking, 82–84

trapped white space, 163
tree structure, inheritance

branches, 255–256
parents and children, 254–255

tutorials, 330–331
typefaces

capitalization, 104–105
drop shadow, 105–106
font family, 62
image and, 85
line height, adjusting, 101–103
monospace, avoiding, 90–91
Optima, 89
points specifying size and position, 107
Roman, 92–94
serif versus sans serif, 87–88
simple style, 96–97
sizes, 97–99
small caps, 96
synonymous, 90
system styles, 91–92
text, 87–92
underline and strikethrough, 103–104
variants, 94–95
weight, specifying, 95

• U •
ultra kerning, 131–133
underline

paragraphs, 171
words, 103–104

Uniform Resource Locator. See URL
universal selector, 49
unnumbered list, 262
unusual positioning, tables and, 217–221
upgrading

browsers, forcing visitors to, 303
HTML pages to CSS, 330

uplevel browsers, 302–303
uppercase

enlarged overlapping at start of
paragraph, 160–162

headlines, 88
kerning, 131
specifying all, 104–105

uppercase letters, smaller (drop caps)
design rules, 160–162
false pseudo-element (first-letter),

274–275
left float, 193

upper-roman numbered lists, 209
URL (Uniform Resource Locator)

case-sensitivity, 41
link formatting, 49, 270–272
validating Web page at, 310

user interface
buttons, 121, 276–277
image-exchange script, 244–246
text, considering, 85–86

users
alternative style sheets, providing,

333–334
redirecting to browser upgrade

site, 303
who disable scripts, programming for,

280–282

• V •
validating work

HTML, 309–314
importance, 300
W3C tool, 304–309

value
attribute selector matching, 52
color, validating, 308–309
defined, 34–35
language, matching, 53
semicolon, leaving out, 62

358 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 358

VBScript
browser acceptance of, 239, 279
scripts, executing upon loading, 282
timer, working with, 290–293

vertical positioning
auto elements, 202–203
boxes, 173–176
repeating background elements,

148–149
text, 138–139

vertical transition wipes, 30
viewport, 76
viruses

ASP.NET server-side code
execution, 283

scripting and, 246, 280
visual effects

bandwidth restrictions and, 233
fading between images, 243–246
static filters, 234–238
transition filters, 238–242
transitions between pages, 246,

248–249
visual organization

borders, 184–191
described, 183

Visual Studio (Microsoft)
benefits of using, 335–336
color, choosing, 116
creating CSS files, 22–23
opening CSS files, 22

• W •
warning paragraphs, accentuating, 115
W3C (World Wide Web Consortium), 76
W3C (World Wide Web Consortium)

validator
error messages, 307–308
property value problems, 308–309

specifying .css file on hard drive,
304–306

viewing, 304
WDG (Web Design Group) CSS and HTML

validators, 314
Web browser compatibility issues

avoiding, 25–26, 97
border styles, 187
centering paragraphs, 201
colors, 116
column alignment, 228
competing styles, 64–65
CSS as end of, 3–4
descendent selectors, 263
ignoring, benefits of, 19–20
kerning, 133
opacity, 84
positioning, 70
resizing columns, 224–228
scripting language, 279
shadowing text, 235
sniffers, 302–303
testing and debugging, 301–303
validating work, 300
vertical positioning, 202
viewport, 76

Web designers, programmers, and
developers, 5

Web Developer extension, 314
Web pages

background texture, 144
color linking themes, 114
do-it-yourself, 5–6
HTML, upgrading to CSS, 330
nesting boxes, 232
template, 232
transition wipes between, 28–30
URL, validating, 310
Word document, transforming into,

55–57

359Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 359

Web pages, transitions between
blinds, 241–242
color changes, 240–241
dramatic visual effects, 246, 248–249
timing, 291

Web sites, addresses listed
color themes, 114
column design and other CSS ideas, 336
CSS, 24–25, 330
design, 324
HTML validator, 310
Internet Explorer debugger, 323
JavaScript programming examples, 243
Microsoft static filters, 236
migrating HTML to CSS, 330
tutorials and reference information,

330–331
W3C validator, 304
WDG, CSS, and HTML validators, 314

weight, typeface, 95
Weltron font, 90
white space

balance, 156–158
lack of, using font to balance, 94
reviewing, 156
thirds, rule of, 166
headline sections, eliminating, 102
violating, 166

width
border, 189–190
box, 172
column, freezing, 228–231
default, 173
monospace fonts, 91
paragraph elements, 176–177
table elements, fixed, 215–216
text, defining, 80

wildcard matching, 53
window, browser use of term, 76
Windows Explorer (Microsoft), 26

Windows Media Player (Microsoft),
276–277

Windows (Microsoft)
drop shadowing on elements, 234–235
operating system typefaces, 91–92

wipe up/down transition, 29, 242
Word (Microsoft) document

editing converted styles, 58–59
transforming into Web page, 54–57

word spacing
described, 135–137
with kerning and line space reduction,

137–138
words

boldface, when to use, 95
breaking up with horizontal lines,

178–181
centering, 70
fading, 27
font, choosing, 86–87, 94
highlighting, 37–38
italics for emphasis, 94–95
line height, 101
lines, special (first-line), 275
matching parts in attributes, 266–267
paragraphs, displaying, 32
trapped white space, avoiding, 163
typefaces, 87–92
user interfaces, considering, 85–86

World Wide Web Consortium (W3C), 76
World Wide Web Consortium (W3C)

validator
error messages, 307–308
property value problems, 308–309
specifying .css file on hard drive,

304–306
viewing, 304

wrapping text
canceling, 194–196
creating, 191–194

360 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 360

writing CSS
all-purpose properties, specifying,

37–38
grouping, 35
ID selectors, 38–41
properties, 34–35
rules, 33–34
subdividing tags, 35–36
text editors versus specialized CSS

editors, 31–33

• X •
x-height, font, 80, 109
XHTML (eXtensible HTML), 40

XML (eXtensible Markup Language)
attribute selector class matching, 52
Word document, converted, 56

• Z •
z-axis

box elements, 170
containing block, 74

z-index, 82–84
zones

color, designating, 113–114
content, placing, 217–221

361Index

28_584251 bindex.qxd 2/10/05 11:32 PM Page 361

362 CSS Web Design For Dummies

28_584251 bindex.qxd 2/10/05 11:32 PM Page 362

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

29_584251 bob.qxd 2/10/05 11:31 PM Page 363

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

29_584251 bob.qxd 2/10/05 11:31 PM Page 364

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®

• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
�Alzheimer’s For Dummies

0-7645-3899-3
�Asthma For Dummies

0-7645-4233-8
�Controlling Cholesterol For Dummies

0-7645-5440-9
�Depression For Dummies

0-7645-3900-0
�Dieting For Dummies

0-7645-4149-8
�Fertility For Dummies

0-7645-2549-2

�Fibromyalgia For Dummies
0-7645-5441-7

�Improving Your Memory For Dummies
0-7645-5435-2

�Pregnancy For Dummies †
0-7645-4483-7

�Quitting Smoking For Dummies
0-7645-2629-4

�Relationships For Dummies
0-7645-5384-4

�Thyroid For Dummies
0-7645-5385-2

HEALTH & SELF-HELP

0-7645-6820-5 *† 0-7645-2566-2

Also available:
�Algebra For Dummies

0-7645-5325-9
�British History For Dummies

0-7645-7021-8
�Calculus For Dummies

0-7645-2498-4
�English Grammar For Dummies

0-7645-5322-4
�Forensics For Dummies

0-7645-5580-4
�The GMAT For Dummies

0-7645-5251-1
�Inglés Para Dummies

0-7645-5427-1

�Italian For Dummies
0-7645-5196-5

�Latin For Dummies
0-7645-5431-X

�Lewis & Clark For Dummies
0-7645-2545-X

�Research Papers For Dummies
0-7645-5426-3

�The SAT I For Dummies
0-7645-7193-1

�Science Fair Projects For Dummies
0-7645-5460-3

�U.S. History For Dummies
0-7645-5249-X

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-5194-9 0-7645-4186-2

* Separate Canadian edition also available
† Separate U.K. edition also available

29_584251 bob.qxd 2/10/05 11:31 PM Page 365

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Products for the Rest of Us!

From hobbies to health,
discover a wide

variety of fun products

DVDs/Videos • Music CDs • Games
Consumer Electronics • Software

Craft Kits • Culinary Kits • and More!

29_584251 bob.qxd 2/10/05 11:31 PM Page 366

	CSS Web Design for Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	Creating Compelling Designs
	Separating Content from Style
	Benefiting from the Cascade
	The End of the Browser Wars
	Who Should Read This Book
	Plain, Clear English
	How to Use This Book
	Foolish Assumptions
	How This Book Is Organized
	Conventions Used in This Book

	Part I: The ABCs of CSS
	Chapter 1: CSS Fulfills a Promise
	Improving HTML
	Getting Efficient with CSS
	Designers Want to Design
	Where CSS Fits with the Tools You Already Use
	Getting Practical
	Avoiding Browser Compatibility Problems
	Getting Dramatic with Filters

	Chapter 2: Getting Results with CSS
	Starting from Scratch
	Selectors and Such: CSS Syntax
	Showing Some Class
	Specifying All-Purpose Properties
	Using an ID Selector
	When Styles Cascade
	Grasping Inheritance

	Chapter 3: Up and Running with Selectors
	Working with Universal Selectors
	Using Multiple Declarations
	Using Attributes as Selectors
	The Simplest Attribute Selector
	Building Your First Style Sheet
	Creating an External Cascading Style Sheet
	Adding New Selectors
	When Cascades Collide

	Part II: Looking Good with CSS
	Chapter 4: Taking a Position
	Relativity Explained
	Flow Versus Positioning, Floating Versus Coordinates
	Controlling Layout with Offsetting
	Moving Deeper into Positioning
	Stacking Elements on Top of Each Other with the Z-Axis
	Combining Stacking with Translucence

	Chapter 5: All About Text
	Thinking About User Interfaces
	Substituting Fonts
	Types of Type
	All Roads Lead to Rome
	Using Font Variants
	Specifying Font Weight
	Using the Font-Variant for Small Caps
	Simple Font-Style
	Choosing the Right Typeface Size
	Specifying Absolute Measured Sizes
	Font: The All-Purpose Property
	Adjusting Line Height
	Decorating Text with Underlining and Strikethrough
	Transforming Text with Capitalization
	Shading with Drop-Shadowing

	Chapter 6: Managing Details in Style Sheets
	Specifying Size and Position
	Figuring the Percentages
	Adding a Bit of Color
	Coloring the Background

	Chapter 7: Styling It Your Way
	Kerning for Better Headlines
	Vertical Tightening
	CSS3 Introduces Kerning Mode
	Word spacing
	Aligning Text
	Horizontal Alignment
	Indenting Text
	Texturing
	Setting Individual Background Properties
	Background Positioning

	Part III: Adding Artistry: Design and Composition with CSS
	Chapter 8: Web Design Basics
	Organizing with White Space
	Emphasizing an Object with Silhouetting
	Adding Drop Caps
	Trapping White Space
	Following the Rule of Thirds
	Keeping It Appropriate

	Chapter 9: Spacing Out with Boxes
	Getting a Grip on Boxes
	Vertical Positioning
	Horizontal Positioning
	Breaking Up Text with Horizontal Lines

	Chapter 10: Organizing Your Web Pages Visually
	Managing Borders
	Floating About
	Canceling a Float with Clear

	Chapter 11: Designing with Auto and Inline Elements
	Employing Auto to Control Layout
	Vertical Positioning with Auto
	Handling Inline Elements

	Chapter 12: Handling Tables and Lists (And Doing Away with Tables)
	List Styles O’ Plenty
	Managing Tables
	Doing Without Tables
	Creating Columns that Resize with the Browser
	Building Fixed Columns

	Chapter 13: Creating Dramatic Visual Effects
	Impressing with Static Filters
	Dazzling with Transition Filters
	Fading Between Images
	Transitions between Pages

	Part IV: Advanced CSS Techniques
	Chapter 14: Specializing in Selection
	Getting Specific with Inheritance
	Offspring Inheriting
	Contextual Selectors
	Thwarting Descendant Selectors
	Selectors Using Attributes

	Chapter 15: CSS Moves into the Future
	Getting to Know CSS3
	Discovering False Pseudo-Classes
	Employing Fake Pseudo-Elements
	The Future of Pseudo
	Figuring Out Dubious Descendant Selectors

	Chapter 16: Programmatic CSS
	Extending CSS with Scripting
	Executing Scripts Automatically upon Loading
	Using the Right Tools for the Job
	Modifying CSS Styles through Programming
	Timing Things Right

	Chapter 17: Testing and Debugging
	Checking Punctuation
	Validating Your Work
	Ignoring Fringe Browsers
	Trying Out the W3C Validator
	Validating HTML
	Debugging Script

	Part V: The Part of Tens
	Chapter 18: Ten Great CSS Tips and Tricks
	Letting Users Control Font Size
	Making Sure Your Borders Show Up
	Watching Out for Color Clash
	Centering for Everyone
	Timing Blurring and Other Effects
	Debugging Script
	Finding a List Apart (Get It?)
	Using Your Own Bullets in Lists
	Specifying Graphics Locations
	Combining Classes
	Aunt Mildred’s Glazed Carrots

	Chapter 19: Ten Topics That Don’t Fit Elsewhere in the Book (But Are Important)
	Keeping Current via the Internet
	Upgrading HTML Web Pages to CSS
	Finding Good Tutorials and Reference Information
	Remembering Inheritance
	The SelectORacle: Getting Explanations About Complicated Rules
	Providing Alternatives
	Letting the User Decide
	Exploring Visual Studio
	Rediscovering Columns
	Playing with Positions

	Index

